OAKLEY CROSSROADS (G) STREAM & BUFFER RESTORATION

MONITORING REPORT (YEAR 4 OF 5)

Pitt County, North Carolina SCO Project Number 050659701 EEP Project Number 273

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Construction Completed: 2011 Data Collected: 2014 Submission Date: December 2014

Prepared by:

Stantec Consulting Services, Inc. 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

Table of Contents

1.0	Executive Summary / Project Abstract
	Methodology
2.1	Morphological Parameters and Channel Stability
2.1.1	
2.1.2	
2.1.3	
2.2	Vegetation
2.3	Hydrology
2.3.1	
2.3.2	
3.0	References
	Appendices
	Appendix A – Project Vicinity Map and Background Tables
	Appendix B – Visual Assessment Data
	Appendix C – Vegetation Plot Data
	Appendix D – Stream Survey Data
	Appendix E – Hydrologic Data

1.0 Executive Summary / Project Abstract

The overall goal of the Oakley restoration project was to improve water quality and wildlife habitat by restoring a stable stream and riparian buffer system to the project site. The objectives of the project were to restore stream stability and improve aquatic habitat, restore riparian buffer along the stream channel, preserve riverine wetlands, establish a wildlife corridor, divert an unbuffered agricultural ditch system from the stream channel to an irrigation pond, and establish native vegetation within the permanent conservation easement. The project included 3,789 linear feet of stream restoration and 329 linear feet of stream enhancement. Priority II stream restoration involved restoring riffle/pool sequences, the installation of structures, and floodplain grading to improve floodplain connectivity and provide diverse instream habitat. Enhancement II stream restoration involved the planting of native hardwood trees and shrubs. Also, native riparian buffer planting took place on over 18 acres of the site, and an additional 1.37 acres of wetland was preserved. The project will result in 3,931 stream mitigation units (SMUs), 17.2 of buffer mitigation units (BMUs), and 0.27 wetland mitigation units (WMUs).

The Monitoring Year 4 [MY4] stem counts within each of the nine (9) vegetative monitoring plots are included in Tables 7 and 9 in Appendix C. Located within the Tar-Pamlico River basin, this project was instituted prior to October 11, 2007 and is therefore eligible for riparian buffer restoration credit up to 200 feet from the top of bank of all perennial and intermittent waterways within the conservation easement area. As such, the vegetative monitoring plots have been assessed for the vegetation success criteria for both buffer (320 planted trees/acre) and streams (MY4 interim criteria of 280 woody stems/acre). Eight of the nine vegetative monitoring plots met the vegetation success criteria for riparian buffers, with the exception of VP7. Of the five plots within the 50-foot stream buffer, four are currently meeting the vegetation success criteria for streams, again the exception is VP7. It should also be noted a supplemental planting took place throughout the project area in November/December 2013. Also, the downstream end of the project was replanted in December 2014.

Evidence, mostly minor, of beavers and nutria has been observed within the project limits in 2011, 2012, and 2013. The only exception was during the 2013 annual fall monitoring when a majority of the Riverine Bottomland Hardwood Forest planting zone was inundated as a result of several beaver dams. Following a full growing season the areas affected by the prolonged inundation have rebounded and the stream remains in stable condition. During the MY4 stream survey, livestakes affected by previous beaver activity were showing evidence of resprouting and should continue with excellent vigor. Areas throughout the stream still have approximately 6-8 inches of fine sediment accumulation. These areas do not appear to be affecting the stability or functionality of the stream, and will be reevaluated during the initial assessment in spring 2015.

Areas of *Murdannia keisak* (marsh dayflower), observed in previous years, are still present in and along the banks of stream throughout Section 1 but have not expanded. *Murdannia keisak* continues to be most abundant between Station 0+50 and 1+50, between Station 3+50 and 7+00, near Station 21+50, and near Station 28+50. Currently, these areas of *Murdannia keisak* do not pose a threat to native vegetation establishment or stream stability, but they will continue to be monitored during future field visits to document any changes. Small areas of *Mikania scandens* (Climbing hempweed) were observed on planted stems in and around vegetative plots 6 and 7 and some isolated sections of livestakes along the

stream banks. *Persicaria perfoliata* (Tearthumb) was also observed in dense colonies throughout the riparian area and on some sections of livestakes. The livestakes will likely be able to out compete both the *Mikania scandens* and *Persicaria perfoliata* without the need for removal/treatment. These areas will continue to be monitored as there is potential for the vines to affect planted stems. Additionally, the streambanks on both left and right bank were observed to be bare below the Briley culvert, between Station 38+25 and 39+00. Overall the planted woody vegetation continues to have excellent vigor and exhibit little to no issues becoming established among the common successional herbaceous species.

Sections 1, 2, and 3 of the Oakley restoration project were observed generally to be in stable condition following a year after being flooded by a beaver impoundment for an extended period of time. As a whole the channel's profile and cross-section adjusted only minimally from baseline conditions. However, from approximately Station 5+00 to 15+00 the thalweg has aggraded relative to previous years. This is likely a result of the degradation observed from Station 0+00 to 5+00 where sediment from upstream of the project area as aggraded relative to the baseline thalweg. The stream appears to be transporting the sediment while remaining stable and functioning as designed. The channel has good connection to its floodplain. Evidence of bankfull overflow was observed during the initial assessment in the spring of 2013 an again in November 2014. The dimension, pattern, and profile survey for MY3 conditions for Section 1 and Section 2 are consistent with the design intent to reduce stream power and erosion potential.

An area of aggradation, noted in previous years, was again observed below the upstream culvert between Station 0+00 and 6+00. Only one structure, a log sill at Station 23+27.75, was observed to be losing grade control, but the area appears to be working toward an equilibrium. The areas of profile adjustment do not currently threaten the stability of the stream. These areas will continue to be monitored during future field visits to document any changes. A few relict nutria burrows were also observed between Station 4+40 and 10+00, but the livestakes are maintaining bank stability and these areas do not threaten the stability of the stream. *Callitriche heterophylla* (water starwort), a non-invasive species, was again observed in several areas along all three sections of the stream. This aquatic plant was also noted to be present in monitoring years 1, 2, and 3 as well as prior to the construction of the restoration project. Neither the nutria nor the water starwort currently threaten the stability of the restored stream. These issues will continue to be monitored during future field visits to document any changes. The permanent pins for Cross-section 6 had been removed and could not be surveyed. The pins wills be reset during the initial assessment of spring 2015.

During the 2013 annual monitoring the flooding caused by the beaver activity hindered the visual assessment of the vegetative cover of brush mattresses along the entire stream and therefore was not included in the monitoring report as requested by NCEEP. Areas observed in 2012 where brush mattresses had less than the required 80% vegetative cover have been removed from Figure 2 in Appendix A, as these areas currently exhibit the required 80% vegetative cover and are thriving.

The wetland preservation areas were also visually assessed during the vegetation monitoring. No issues were observed in these areas and existing vegetation appears to be in good condition. These areas will continue to be monitored during future field visits.

Summary information, data, and statistics related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan

documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 Methodology

Channel stability and vegetation survival were monitored on the project site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success. The Monitoring Year 4 survey was completed using survey grade GPS on October 7 and 29, 2014.

2.1 MORPHOLOGICAL PARAMETERS AND CHANNEL STABILITY

2.1.1 Dimension

Dimensional characteristics were monitored at 7 permanent cross-sections (4 riffles, 3 pools) along Section 1 and Section 2. Survey data included points measured at all breaks in slope including top of bank, bankfull, inner berm, edge of water, and thalweg. Dimensional characteristics were compared to baseline conditions. All monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. Stream channel stability and geomorphic monitoring for Section 3 was documented visually. Natural variability is expected, however the system should not experience trends toward excessive increasing bank erosion, channel degradation, or channel aggradation.

2.1.2 Pattern and Profile

The entire longitudinal profile of Section 1 and Section 2 was surveyed. Stationing from the as-built survey was used. The longitudinal profiles should show that the bedform features are remaining stable. The pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools.

2.1.3 Sediment Transport

As discussed in prior project documentation, additional sediment transport evaluations will not be undertaken during the five-year monitoring period. However, the dimension, pattern, and profile survey for MY4 conditions for Section 1 and Section 2 were analyzed to determine whether the current sediment competency and capacity is consistent with the design.

2.2 VEGETATION

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation on October 29, 2014. Nine 100-square meter CVS plots have been established within the project area. In each plot, four plot corners have been permanently located with rebar. Volunteer plant species (Level 2) were recorded this year and will only be considered in vegetative success determinations for the stream portion of this project. As such, volunteer plant species will be recorded for subsequent monitoring years in vegetation plots located within the 50 foot buffer of the restored stream. Refer to Figure 2 in Appendix A. In all vegetation plots species composition, density, and survival of the planted vegetation was monitored.

This project is generating both stream and riparian buffer mitigation assets. Vegetation success for these assets is measured in the following manners. Stream mitigation units (SMUs) require 260 planted and volunteer native hardwood stems (trees and shrubs) per acre for a minimum of 5 years. Buffer mitigation units (BMUs) require 260 stems per acre of planted native hardwood and volunteer stems (trees and shrubs) for a minimum of 5 years. In accordance with North Carolina Division of Water Quality Administrative Code 15A NCAC 02B.0295 (*Mitigation Program for Requirements for Protection and Maintenance of Riparian Buffers*) "[planted vegetation] shall include a minimum of at least four native hardwood tree species or four native hardwood tree and native shrub species, where no one species is greater than 50% of established stems at a density to provide 260 trees per acre at maturity. Native volunteer species may be included to meet performance standards." Also, for SMUs and BMUs, the buffer must be at least 30-feet wide on both sides of the channel.

The interim measure of vegetative success for SMUs for the site will be the survival of at least 320 3-year old stems per acre at the end of year three of the monitoring period and 280 4-year old stems per acre at the end of year four monitoring period. There are no interim measures of vegetative success for BMUs.

2.3 HYDROLOGY

2.3.1 Wetland

Neither wetland restoration nor enhancement credit is being sought for this project. Existing jurisdictional wetlands as depicted in Figure 2 in Appendix A are being preserved. The wetland preservation areas are visually assessed during each monitoring year.

2.3.2 Stream

One crest gauge has been installed onsite and is located near Cross-section 3. Each visit to the site included documentation of the highest stage for the monitoring interval and a reset of the device. Other indications of bankfull flow including the presence of debris lines, sediment, or flooding were also monitored, and their presence was recorded and documented photographically. Refer to Figure 2 in Appendix A for the location of the crest gauge.

3.0References

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)

NCDWQ. 2004. Tar-Pamlico River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Raleigh, NC.

NCEEP. 2010. Procedural Guidance and Content Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.3, January 15, 2010.

NCEEP. 2008. Mitigation Plan Document – Format Data Requirements, and Content Guidelines. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 2.0, March 27, 2008.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley, 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, North Carolina.

United States Army Corps of Engineers – Wilmington District, North Carolina Division of Water Quality, United States Environmental Protection Agency – Region IV, Natural Resources Conservation Service, North Carolina Wildlife Resources Commission. 2003. Stream Mitigation Guidelines.

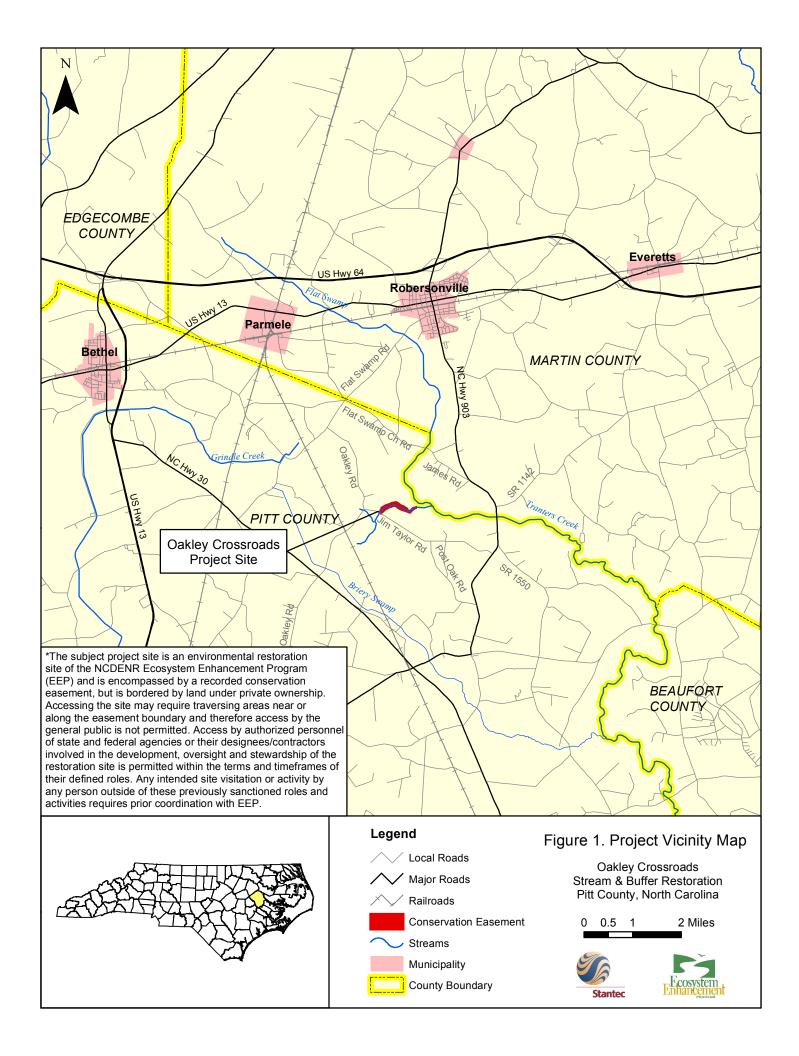
4.0Appendices

Appendix A – Project Vicinity Map and Background Tables

Appendix B – Visual Assessment Data

Appendix C – Vegetation Plot Data

Appendix D – Stream Survey Data


Appendix E – Hydrologic Data

Appendix A. Project Vicinity Map and Background Tables

Figure 1 Table 1a.b. Vicinity Map and DirectionsProject Restoration Components

Table 2

Project Activity and Reporting History
Project Contacts
Project Attribute Table 3 Table 4

	Table 1a. Project Components and Mitigation Credits									
			Oakle	y Crossroad	s Stream an	d Buffer Res	toration (E	EP# 273)		
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing/ Location	Mitigation Ratio	Mitigation Units	BMP Elements ¹	Comment	
Section 1	2,950	R	PII	3,637	00+00 to 37+98.64	1:1	3,637		Ten foot width of ford crossing removed from total length. 152 LF of restored stream with <50' buffer separated into line item below. Total restoration footage 3,637 LF.	
Section 1, <50 ft buffer	152	R	PII	152	~33+00 to ~37+00	1:1	152		152 LF of restored stream has <50' buffer on right bank. Mitigation ratio is likely to change once DWQ publishes reduced SMU calculation for areas with <50 ft of buffer.	
Section 2	40	Е	EII	40	~38+39 to ~38+79	1.5:1	26.7		Enhancement - log structures, brush mattresses and planting.	
Section 3	289	E	EII	289	downstream of Section 2	2.5:1	115.6		Enhancement - planting only.	
Riparian Buffer	n/a	R		747,167 sq ft	n/a	1:1	747,167		786,258 sq ft planted, 747,167 sq ft of which are eligible for mitigation credit. Area removed for areas with undiffuse flow, buffer width >200', or buffer width <50'.	
Wetlands	1.37	P		1.37	n/a	5:1	0.27			

Table 1b. Component Summations									
Oakley Crossroads Stream and Buffer Restoration (EEP #273)									
Restoration	Stream	Ripa	arian	Non-Ripar	Upland	Buffer			
Level	(lf)	Wetlar	nd (Ac)	(Ac)	(Ac)	(Ac)	BMP		
			Non-						
		Riverine	Riverine						
Restoration	3789					17.2			
Enhancement									
Enhancement I									
Enhancement II	329								
Creation									
Preservation		1.37							
HQ Preservation									
Totals (Feet/Acres)	4118	1	37			17.2			
MU Totals	3,931.3	0.	0.27			17.2			

Non-Applicable

Table 2. Project Activity and Reporting History							
Oakley Crossroads Stream and Buffer Re	estoration (EEP#	273)					
Elapsed Time Since Grading Complete:	42 months						
Elapsed Time Since Original Planting Complete:	42 months						
Number of Reporting Years ¹ :	4						
	Data Collection	Completion or					
Activity or Deliverable	Complete	Delivery					
Mitigation Plan	n/a	August 2006					
Final Design – Construction Plans	n/a	June 2010					
Construction (Grading complete)	n/a	May 2011					
Seeding	n/a	May 2011					
Planting	n/a	May 2011					
As-built (Year 0 Monitoring – baseline)	June 2011	July 2011					
Year 1 Monitoring	September 2011	November 2011					
Replanting (bareroots)	n/a	January 2012					
Year 2 Monitoring	October 2012	November 2012					
Year 3 Monitoring	November 2013	Februrary 2014					
Year 4 Monitoring	October 2014	November 2014					
Year 5 Monitoring	n/a	n/a					
1 = Equals the number of reports or data points produced	excluding the basel	ine					

Table	Table 3. Project Contacts Table					
Oakley Crossroads S	tream and Buffer Restoration (EEP# 273)					
Designer	Stantec Consulting Services, Inc.					
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606					
Primary project design POC	Nathan Jean (970) 449-8615					
Construction Contractor	Ecosystems Grading Solutions, Inc.					
	6642 Roper Hollow Rd., Morganton, NC 28655					
Construction contractor POC	Bobby Koone (828) 584-3018					
Survey Contractor	Turner Land Surveying					
	3201 Glenridge Dr., Raleigh, NC 27604					
Survey contractor POC	Elizabeth and David Turner (919) 875-1378					
Planting Contractor	Bruton Natural Systems, Inc.					
	P.O. Box 1197, Remont, NC 27830					
Planting contractor POC	Charlie Bruton (919) 242-6555					
Seeding Contractor	Ecosystems Grading Solutions, Inc.					
	6642 Roper Hollow Rd., Morganton, NC 28655					
Contractor point of contact	Bobby Koone (828) 584-3018					
Seed Mix Sources	Green Resources					
Nursery Stock Suppliers	Southeastern Native Plant Nursery					
	South Carolina Super Tree Nursery					
	Natives					
Monitoring Performers	Stantec Consulting Services, Inc.					
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606					
Stream Monitoring POC	Tim Taylor (980) 297-7669					
Vegetation Monitoring POC	Amber Coleman (919)865-7399					
Wetland Monitoring POC	n/a					

Table 4. Project Baseline Information and Attributes						
Oakley Crossroads Stre	eam and Buffer Re	storation (EEP# 273)			
Pi	roject Information					
Project County		Pitt				
Project Area (acres)		26.6				
Project Coordinates (latitude and longitude)		35.76692, -77.269	9077			
Project Water	rshed Summary I	nformation				
Physiographic Region		Coastal Plain				
River Basin		Tar-Pamlico				
USGS HUC for Project (14 digit)		030201030900	2			
NCDWQ Sub-basin for Project		03-03-06				
Project Drainage Area (sq mi)		1.71				
Project Drainage Area % Impervious		<1%				
CGIA Landuse Classification		Cropland and Pas	sture			
Reach	Summary Informa	ntion				
Reach name	Section 1	Section 2	Section 3			
Length of reach (linear feet)	3,799	40	289			
Valley classification	VIII	VIII	VIII			
Drainage area (acres)	1,014.5	1,014.7	1,092.3			
NCDWQ stream identification score	41	40.5	40.5			
NCDWQ classification	n/a	n/a	n/a			
Morphological description (stream type)	E5	F5	F5			
Evolutionary trend	E5	C5	C5			
Underlying mapped soils	Bladen	Pantego	Pantego			
Drainage class	Poorly drained	Very poorly drained	Very poorly drained			
Soil hydric status	Yes	Yes	Yes			
Slope	0-2%	0-1%	0-1%			
FEMA classification	Zone X	Zone X	Zone X			
Native vegetation community	Riverine bottom	land hardwood and mes	sic mixed hardwood forest			
Percent composition of exotic invasive vegetation	0%	0%	10%			
Wetland	d Summary Inform	ation				
n/a - w	etland preservation	only				
Regu	latory Considerati	ons				
Regulation	Applicable?	Resolved?	Supporting Documentation			
Waters of the United States - Section 404	Yes	Yes	USACE 404 permit			
Waters of the United States - Section 401	Yes	Yes	NCDWQ 401 permit			
Endangered Species Act	n/a					
Historic Preservation Act	No	n/a	n/a			
Coastal Zone Management Act (CZMA)/Coastal						
Aream Management Act (CAMA)	No	n/a	n/a			
FEMA Floodplain Compliance	No	n/a	n/a			

Appendix B. Visual Assessment

Figure 2 — Asset Map (1 Sheet)

Figure 2a and b — Current Condition Plan View (2 Sheets)

Table 5 – Visual Stream Morphology Stability Assessment

Table 6 – Vegetation Condition Assessment

Photos – Stream Stations (S1-S9) Photos – Vegetation Plots (V1-V19)

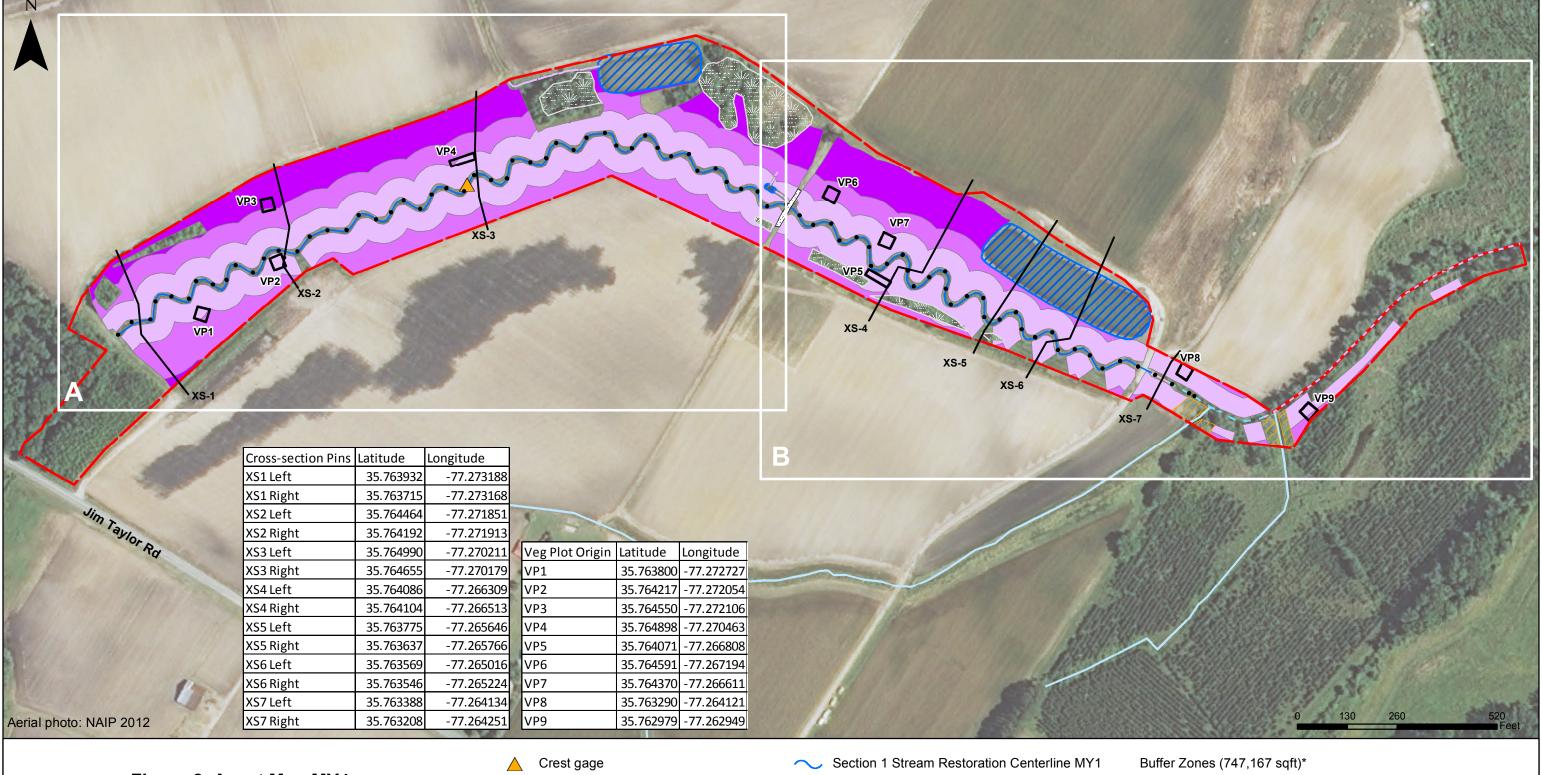
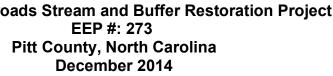
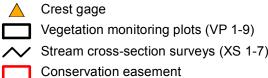




Figure 2. Asset Map MY4

Oakley Crossroads Stream and Buffer Restoration Project EEP #: 273 Pitt County, North Carolina

Section 2 Stream Enhacement II

Section 3 Stream Enhacement II (planting only)

Other on-site hydrography

Non-buffered waterways

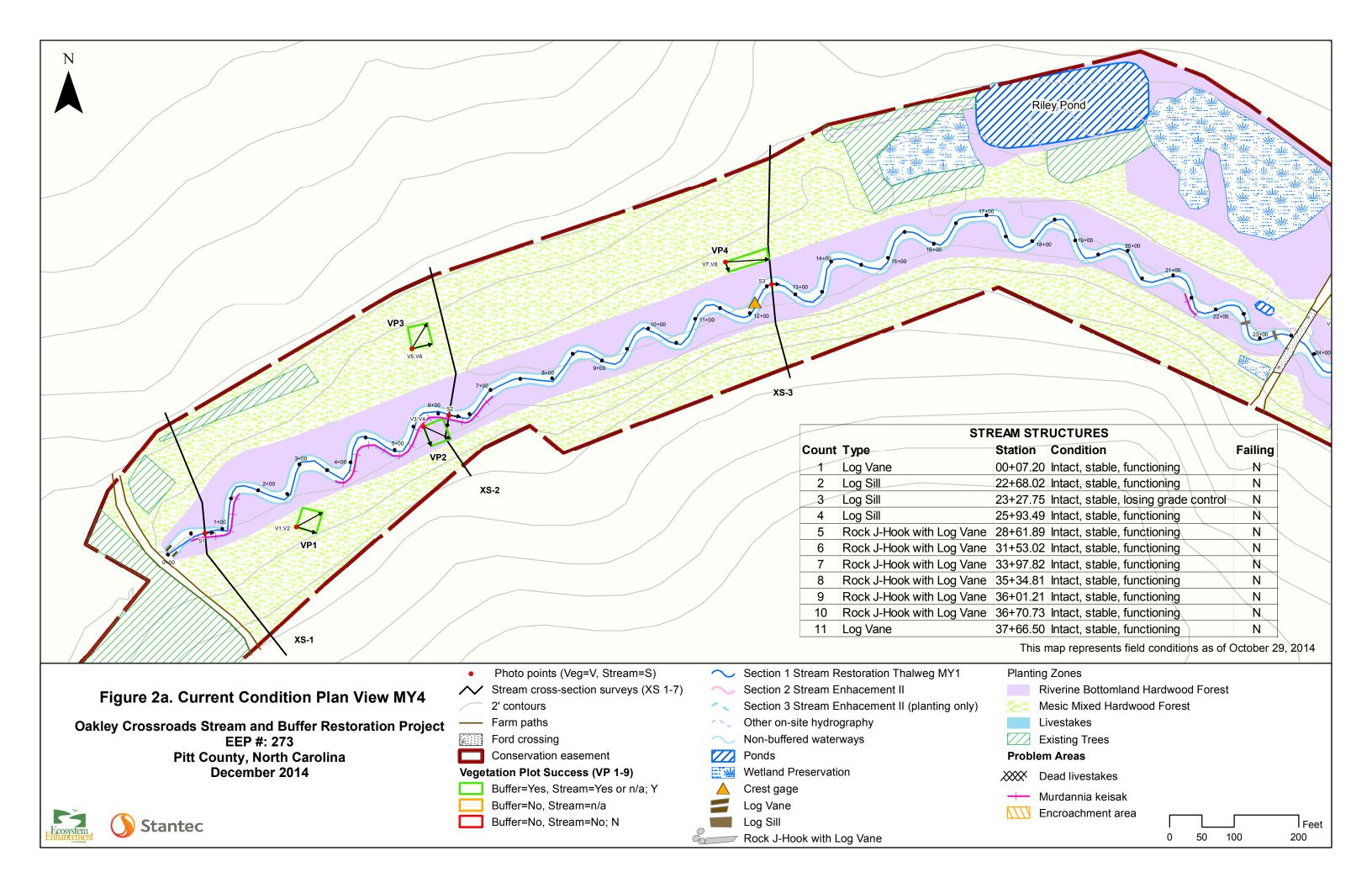
Ponds

Ford crossing

Wetland preservation

Top of Bank - 50 ft (368,217 sqft)

50 ft - 100 ft (228,582 sqft)


100 ft - 200 ft (150,368 sqft)

No Credit Non-diffuse/Non-buffered waterways (4,3560 sqft removed per waterway)

* Buffer zones are planted contiguous areas that have a buffer width of at least 50' but not greater than 200'. Areas not included in the buffer credit area include: existing Jurisdictional wetlands, farm ponds, areas that were not planted, and areas surrounding each non-diffuse/non-buffered waterway entering the easement.

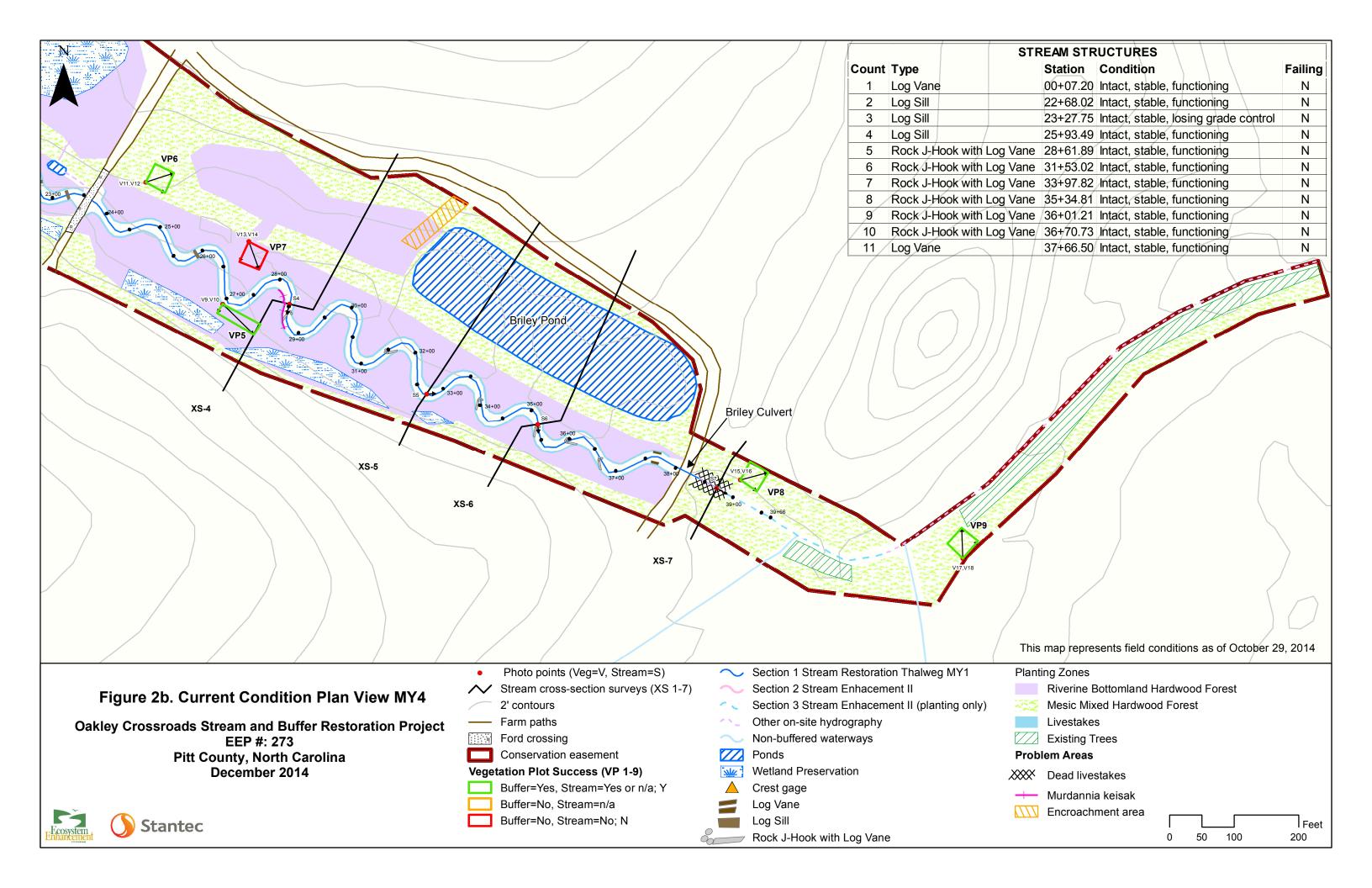


Table 5 <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Reach 1

Reach ID Reach
Assessed Length 3800

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
	(Riffle and Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	N/A	56			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	56	56			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	56	56			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	56	56			100%			
	Thalweg Position Thalweg centering at downstream of meander (Glide)		56	56			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	11	11			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	11			91%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	11	11			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	11	11			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	11	11			100%			

	Table 6. Vegetation Condition As	sessment				
	Oakley Crossroads Stream and Buffer Res	toration (EEF	P# 273)			
Planted acreage*	18					
		Mapping	CCPV	Number of	Combined	% of Planted
Vegetation Category	Definitions	Threshold	Depiction	Polygons	Acreage	Acreage
1. Bare Areas	Very limited cover of woody material	0.1 acres	none	0	0	0.0%
	Woody stem densities below target levels for					
2. Low Stem Density	stem count success criteria	0.1 acres	none	0	0	0.0%
			Total	0	0	0.0%
	Areas with woody stems of a size class that					
3. Areas of Poor Growth Rates or Vigor	are obviously small given the monitoring year	0.25 acres	None	0	0	0.0%
			Total	0	0	0.0%
Easement acreage	26.6					
						% of
		Mapping	CCPV	Number of	Combined	Easement
Vegetation Category	Definitions	Threshold	Depiction	Polygons	Acreage	Acreage
			Magenta line	4 line		
			with cross-	segments		
4. Invasive areas of concern	Murdannia keisak	1000 SF	hatches	~3' wide	0.039	0.1%
			Orange line			
5. Encroachment areas	Area has been recently mowed	none	with hatching	1	0.061	0.2%

^{*}Total planted acreage

Stream Station Photos

Photo Station S1 – Stream channel looking downstream at cross-section 1 Station 00+72 - Priority 2 (10/07/14 Year 4)

Photo Station S2 –Stream channel looking downstream at cross-section 2 Station 06+17 – Priority 2 (10/07/14 Year 4)

Photo Station S3 – Stream channel looking downstream at cross-section 3 Station 12+59 – Priority 2 (10/07/2014 Year 4)

Photo Station S4 – Stream channel looking downstream at cross-section 4 Station 28+46 – Priority 2 (10/07/2014 Year 4)

Photo Station S5 – Stream channel looking downstream at cross-section 5 Station 32+71 – Priority 2 (10/07/2014 Year 4)

Photo Station S6 – Stream channel looking downstream at cross-section 6 Station 35+24 – Priority 2 (10/07/2014 Year 4)

Photo Station S7 – Stream channel looking downstream at cross-section 7 Station 38+71 – Enhancement 2 (10/07/2014 Year 4)

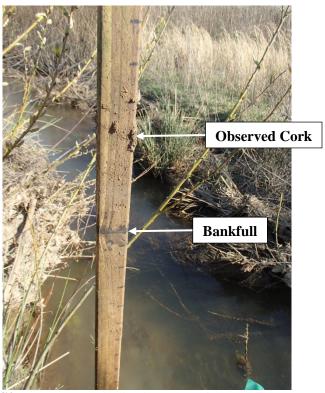


Photo Station S8 – Crest gauge indicating a bankfull event (04/02/2014 Year 4)

Photo Station S9 – Sediment on vegetation above bankfull limits (10/07/2014 Year 4)

Vegetation Plot Photos

Photo Station V1 - Veg Plot 1 looking southeast (10/29/2014 Year 4)

Photo Station V2 - Veg Plot 1 looking east (10/29/2014 Year 4)

Photo Station V3 - Veg Plot 2 looking south (10/29/2014 Year 4)

Photo Station V4 - Veg Plot 2 looking southeast (10/29/2014 Year 4)

Photo Station V5 - Veg Plot 3 looking east (10/29/2014 Year 4)

Photo Station V6 - Veg Plot 3 looking northeast (10/29/2014 Year 4)


Photo Station V7 - Veg Plot 4 looking south (10/29/2014 Year 4)

Photo Station V8 - Veg Plot 4 looking southeast (10/29/2014 Year 4)

Photo Station V9 - Veg plot 5 looking south (10/29/2014 Year 4)

Photo Station V10 - Veg plot 5 looking southeast (10/29/2014 Year 4)

Photo Station V11 - Veg plot 6 looking east (10/29/2014 Year 4)

Photo Station V12 - Veg plot 6 looking northeast (10/29/2014 Year 4)

Photo Station V13 - Veg plot 7 looking south (10/29/2014 Year 4)

Photo Station V14 - Veg plot 7 looking southeast (10/29/2014 Year 4)

 $\textbf{Photo Station V15 -} \ Veg \ plot \ 8 \ looking \ east \ (10/29/2014 \ Year \ 4)$

Photo Station V16 - Veg plot 8 looking northeast (10/29/2014 Year 4)

Photo Station V17 - Veg plot 9 looking northeast (10/29/2014 Year 4)

Photo Station V18 - Veg plot 9 looking north (10/29/2014 Year 4)

Appendix C. Vegetation Plot Data

Table 7a,b.

Table 8

Vegetation Plot Mitigation Success Summary
CVS Vegetation Metadata
CVS Stem Count Total and Planted by Plot and Species Table 9

(This page intentionally left blank for two-sided printing)

Oakley Crossroads (G) (#273) Year 4 (29-Oct-2014)

Vegetation Plot Summary Information

Plot #	Riparian Buffer Stems ¹	Stream/ Wetland Stems ²	Live Stakes	Invasives	Volunteers ³	Total⁴	Unknown Growth Form
0001	20	22	0	0	14	36	0
0002	8	8	0	0	33	41	0
0003	22	22	0	0	8	30	0
0004	19	20	0	0	26	46	0
0005	10	10	0	0	6	16	0
0006	22	22	0	0	536	558	0
0007	5	5	0	0	12	17	0
8000	16	16	0	0	2	18	0
0009	17	n/a	0	0	34	51	0

	Wetla	nd/Stream V	/egetatior	Totals								
	(per acre)											
	Stream/			Success								
	Wetland			Criteria								
Plot #	Stems ²	Volunteers ³	Total⁴	Met?								
0001	890	567	1457	Yes								
0002	324	1335	1659	Yes								
0003	890	324	1214	Yes								
0004	809	1052	1862	Yes								
0005	405	243	647	Yes								
0006	890	21691	22581	Yes								
0007	202	486	688	No								
0008	647	81	728	Yes								
0009	688	1376	2064	Yes								
Project Avg	638	3017	3656	Yes								

R	iparia	n Buffer V	egetation
		(per	acre)
		Riparian Buffer	Success Criteria
Plot	#	Stems ¹	Met?
000)1	809	Yes
000)2	324	Yes
000)3	890	Yes
000)4	769	Yes
000)5	405	Yes
000)6	890	Yes
000)7	202	No
000)8	647	Yes
000)9	688	Yes
Project	t Avg	625	Yes

Stem Class characteristics

¹Buffer

Stems Native planted hardwood trees. Does NOT include shrubs. No pines. No vines.

²Stream/ Wetland

Stems Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines

³Volunteers Native woody stems. Not planted. No vines.

⁴Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%

	Table 8 - CVS Metadata
Oakley Cross	roads Stream and Buffer Restoration - EEP #273
Report Prepared By	Amber Coleman
Date Prepared	11/18/2014 15:00:59 PM
Date Frepareu	11/10/2014 13.00.331 Wi
database name	STantec_Oakley_2014cvs-eep-entrytool-v2.3.1.mdb
database location	U:\175613016\project\site_data\vegetation
computer name	COLEMANA-LT
file size	61751296
DESCRIPTION OF WORKSHEETS I	N THIS DOCUMENT
	Description of database file, the report worksheets, and a
Metadata	summary of project(s) and project data.
	Each project is listed with its PLANTED stems per acre, for each
Proj, planted	year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year.
	This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
	List of plots surveyed with location and summary data (live
Plots	stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of
Damage	occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for
Planted Stems by Plot and Spp	each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species
	(planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	273
project Name	Oakley Crossroads (G)
Description	Stream and Wetland Restoration
River Basin	Tar-Pamlico
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	9

			Table 9. CVS Stem Count Total and Planted by Plot and Species																																								
				EEP Project Code 273. Project Name: Oakley Crossroads																																							
													Curr	rent Plo	ot Data	(MY42	2014)																	Α	nnual	Means	s						П
			E27	73-01-0	001	E273-0	1-0002		E273-01	L-0003	E2	73-01-0	0004	E2:	73-01-0	0005	E2	73-01-0	006	E27	73-01-0007	E	273-01	-0008	E2	73-01-0	009	M	Y4 (2014		MY	3 (2013)		r	MY2 (20:	J12)	П	MY1	(2011)		MY0 (2	2011)	٦
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS P-a	II T	Pno	LS P-al	II T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	S P-all	Т	PnoLS	P-all T	Pno	LS P-al	I T	PnoLS	P-all	Т	PnoLS	P-all T	Pno	LS P	-all T		PnoLS	P-all	т	Pnol	LS P	-all T	PnoLS	P-all	т Т	٦
Acer rubrum	red maple	Tree			3		1	19		7	7		12						536			7					12			596			124										
Acer rubrum var. rubrum	red maple	Tree																																	T	1.	.47						
Alnus serrulata	hazel alder	Shrub						7																						7			6		T		4						
Cornus amomum	silky dogwood	Shrub																																	T		2						П
Eubotrys racemosa																																			T			1	1	1	1	1	1
Fraxinus pennsylvanica	green ash	Tree	4	4	4				4	4 4	1 4	4	4				7	7 7	7						6	6	6	25	25	25	22	22	22	2	.2 .7	22	22	13	13	13	13	13	13
Liquidambar styraciflua	sweetgum	Tree			2			7					13														18			40			41		T		33						
Liriodendron tulipifera	tuliptree	Tree											1																	1			1		T								
Magnolia virginiana	sweetbay	Tree	1	. 1	1						1	. 1	1				1	1 1	1									3	3	3	3	3	3		3	3	3	3	3	3	3	3	3
Morella cerifera	wax myrtle	shrub	2	2	2						1	. 1	1											1	1			3	3	4	3	3	4		3	3	3	3	3	3	3	3	3
Nyssa biflora	swamp tupelo	Tree				6	6	6												1	1	1						7	7	7	8	8	8		9	9	9	1	1	1	1	1	1
Nyssa sylvatica	blackgum	Tree	3	3	3	3			4	4 4	1 3	3	3	2	2	. 2	5	5 5	5									17	17	17	16	16	17	1	.3 :	13	13	2	2	2	2	2	2
Pinus taeda	loblolly pine	Tree			2																									2			1										
Platanus occidentalis	American sycamore	Tree	4	4	. 4	ļ.			7	7 7	7 6	6 6	6	5				1 4	4	1	1	1			4	4	6	26	26	28	27	27	33	2	28 2	28	28	14	14	14	14	14	14
Quercus	oak	Tree																																	1			2	2	2	7	7	7
Quercus falcata	southern red oak	Tree	8	8 8	8	3			6	6 6	5 5	5 5	5 5	1	. 1	. 1	. 3	3 3	3				4	4 4	4 7	7	9	34	34	36	32	32	36	3	:00	30	30	10	10	10	12	12	12
Quercus lyrata	overcup oak	Tree				2	2	2						1	. 1	. 1	. 1	1 1	1									4	4	4	7	7	8		7	7	7	7	7	7	4	4	4
Quercus michauxii	swamp chestnut oal	Tree												2	2	2												2	2	2	4	4	4		6	6	6	7	7	7	9	9	9
Quercus nigra	water oak	Tree							1	1 1	1						1	1 1	1				11 :	11 11	1			13	13	13	13	13	13	1	.4 :	14	14	13	13	13	7	7	7
Quercus pagoda	cherrybark oak	Tree																		1	1	1	1	1 1	1			2	2	2	2	2	2		3	3	3	2	2	2			
Quercus phellos	willow oak	Tree												4	4	4				1	1	1						5	5	5	10	10	10	1	.0 :	10	10	12	12	12	16	16	16
Quercus rubra	northern red oak	Tree																																	T		1						٦
Rhus copallinum	flameleaf sumac	shrub			7	,																		1	1					8			6										
Salix nigra	black willow	Tree																		1	1	6						1	1	6					1								
Sambucus canadensis	Common Elderberry	Shrub								1	1					6	5													7			1		1		3						
Toxicodendron radicans	eastern poison ivy	Vine																																			1						
Unknown	<u> </u>	Shrub or Tree																																							1	1	1
		Stem count	22	22	36	8	8 4	11	22 2	22 30	20	20	46	10	10	16	22	2 22	558	5	5	17	16 :	16 18	8 17	17	51	142	142	813	147	147	340	14	18 14	.48 3	339	90	90	90	93	93	93
		size (ares)		1		1		1	1			1			1			1			1		1			1			9			9			9		十		9		9		╗
		size (ACRES)		0.02		0.0)2	1	0.0)2	1	0.02			0.02			0.02			0.02		0.0	2		0.02			0.22			0.22			0.22		十).22		0.2	22	\exists
		Species count	6	6	10	2	2	5	5	5 7	7 6	6	9	5	5	6	7	7 7	8	5	5	6	3	3 5	5 3	3	5	13		20	12	12	19	1		12	19	14	14	14	14	14	14
	S	items per ACRE	890.3	890.3	1457	323.7 32	3.7 165	59 890	0.3 890	0.3 1214	1 809.4	809.4	1862	404.7	404.7	647.5	890.3	890.3	22581	202.3	202.3	88 647	.5 647	.5 728.4	4 688	688	2064	638.5		3656 6	50.99	560.99	1528.8	665.48		48 1524	4.3 40		04.69 404			418 4	118

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

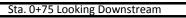
PnoLS = Planted excluding livestakes
P-all = All planted stems including livestakes
T = All planted and natural recruit stems including livestakes

Total includes natural recruit stems

Appendix D. Stream Survey Data

Figures 3a-g

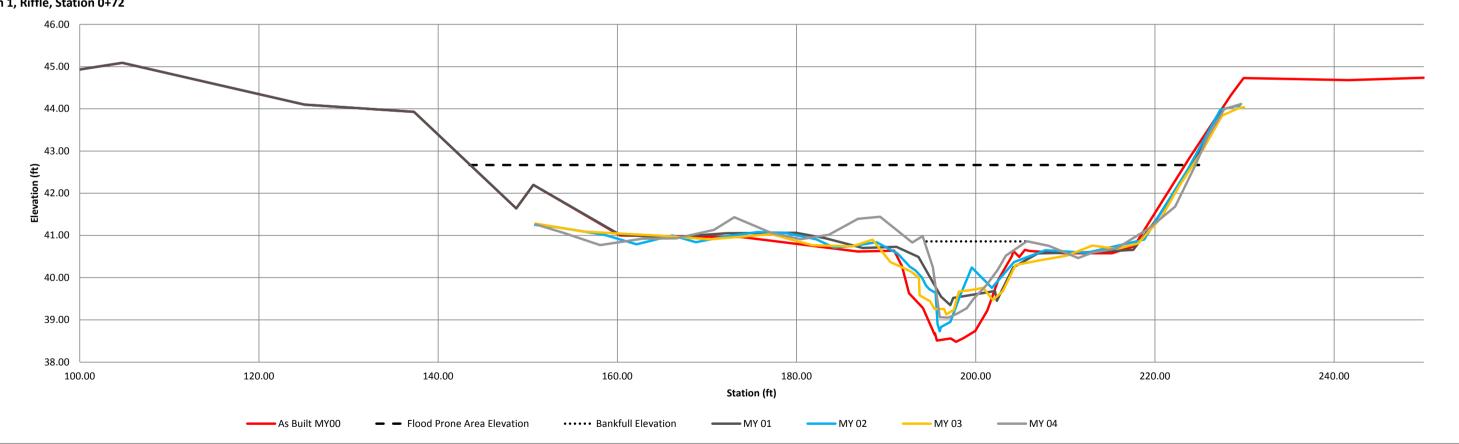
Cross-Sections with Annual Overlays
Longitudinal Profiles with Annual Overlays
Baseline – Stream Data Summary Figure 4

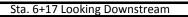

Table 10a,b.

Monitoring – Cross-section Morphology Data
Monitoring – Stream Reach Morphology Data Table 11a. Table 11b.

(This page intentionally left blank for two-sided printing)

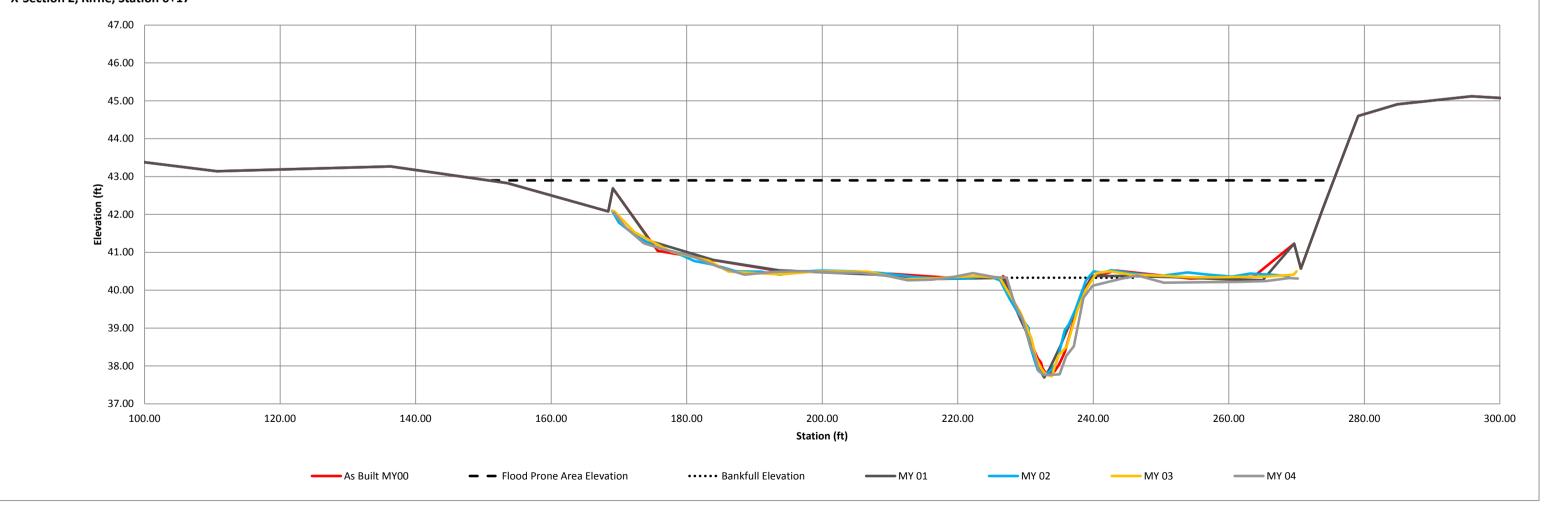
River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-1, Riffle, STA 0+72
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor, A. Baldwin


М	Y 00	М	Y 01	М	Y 02	MY	′ 03	MY	04
Station	Elevation								
12.21	49.05	12.21	49.05	150.82	41.25	150.84	41.28	150.9	41.263
19.33	48.29	19.33	48.29	153.07	41.20	156.31	41.09	153.97	41.063
28.16	46.74	28.16	46.74	155.79	41.11	165.33	40.99	158.08	40.773
35.77	46.38	35.77	46.38	158.62	41.01	170.30	40.91	162.84	40.923
47.80	45.82	47.80	45.82	162.14	40.79	177.18	41.03	166.57	40.933
59.77	45.48	59.77	45.48	166.15	41.00	181.76	40.77	170.79	41.133
74.68	45.23	74.68	45.23	168.77	40.84	186.24	40.74	173.05	41.433
81.30	45.02	81.30	45.02	172.16	40.98	188.48	40.90	177.14	41.063
87.17	45.62	87.17	45.62	175.62	41.08	190.46	40.37	180.46	40.913
93.57	44.59	93.57	44.59	178.75	41.06	191.75	40.25	183.59	41.013
98.13	44.87	98.13	44.87	182.20	40.91	192.82	40.14	186.85	41.393
104.75	45.09	104.75	45.09	184.20	40.71	193.66	39.99	189.32	41.443
125.09	44.10	125.09	44.10	186.59	40.76	193.73	39.58	192.91	40.833
137.30	43.93	137.30	43.93	188.93	40.84	194.91	39.44	194.07	40.983
148.71	41.64	148.71	41.64	191.29	40.57	195.40	39.26	195.21	40.243
150.62	42.20	150.62	42.20	192.64	40.26	196.46	39.26	195.98	39.063
160.31	41.00	160.25	41.02	193.29	40.17	196.71	39.13	196.94	39.053
173.90	40.96	165.47	40.95	194.00	40.00	197.55	39.24	197.95	39.153
186.83	40.62	172.19	41.05	194.43	39.82	198.10	39.67	198.98	39.273
190.89	40.64	179.93	41.07	194.80	39.73	199.56	39.71	199.8	39.513
191.77	40.27	183.19	40.94	195.51	39.64	200.82	39.76	201.19	39.823
192.56	39.63	187.40	40.70	195.74	38.90	201.92	39.47	202.44	40.183


				The Part of the Part of the	
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	40.63	40.72	40.57	40.37	40.86
Bankfull Cross-Sectional Area	18.33	8.37	9.77	9.15	11.21
Bankfull Width	20.80	12.39	15.49	15.73	11.65
Flood Prone Area Elevation	42.78	41.63	42.41	41.61	42.67
Flood Prone Width	80.66	65.65	78.50	70.36	80.93
Max Depth at Bankfull	2.15	1.14	1.84	1.24	1.81
Mean Depth at Bankfull	0.88	0.68	0.63	0.58	0.96
W/D Ratio	23.64	18.22	24.59	27.12	12.14
Entrenchment Ratio	3.88	5.30	5.07	4.47	6.95
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
Stream Tyne		(((_

Oakley Crossroads - UT to Tranters Creek X-Section 1, Riffle, Station 0+72

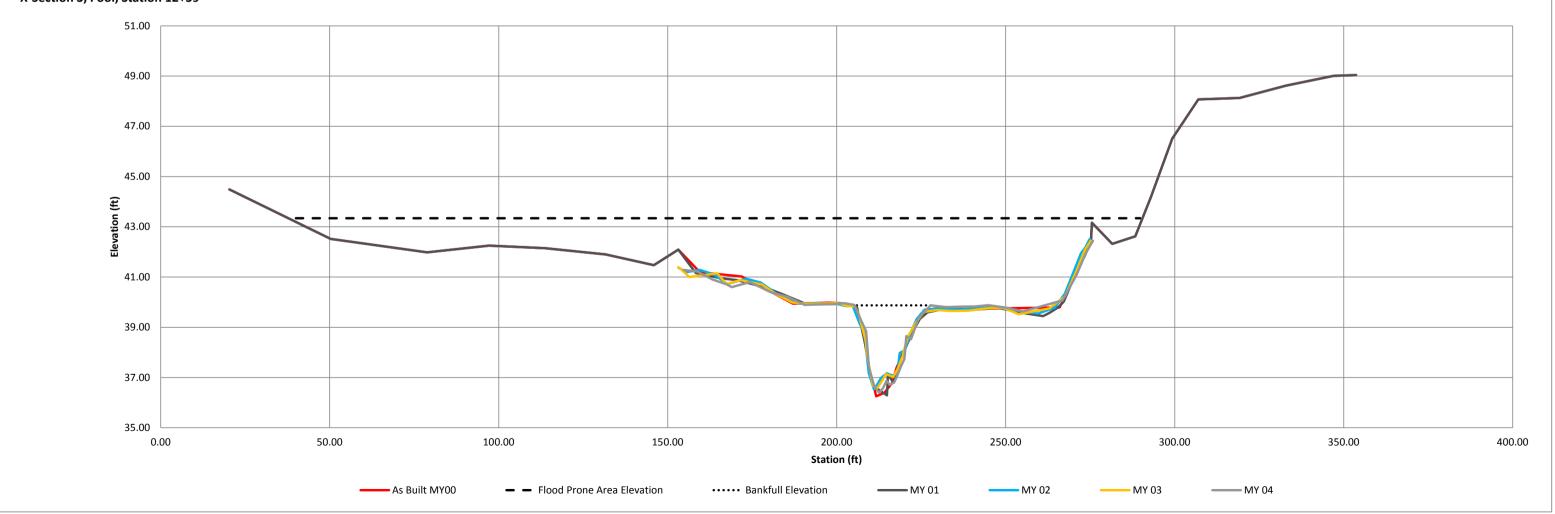
River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-2, Riffle, STA 6+17
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor, A. Baldwin


l. N	1Y 00	N	IY 01	M'	Y 02	M'	Y 03	M	Y 04
Station	Elevation								
12.76	46.91	12.76	46.91	169.00	42.10	169.04	42.10	169.24	42.05
33.99	44.63	33.99	44.63	169.98	41.79	169.40	42.07	170.96	41.66
54.24	44.37	54.24	44.37	172.32	41.46	172.25	41.54	173.68	41.24
72.47	43.91	72.47	43.91	175.26	41.16	177.69	41.02	176.7	41.07
92.77	43.54	92.77	43.54	178.46	40.99	183.24	40.78	180.43	40.92
110.68	43.14	110.68	43.14	181.16	40.77	186.21	40.49	184.5	40.63
136.32	43.27	136.32	43.27	184.02	40.67	193.91	40.42	188.53	40.41
153.53	42.83	153.53	42.83	187.28	40.50	199.31	40.50	192.63	40.48
168.42	42.08	168.42	42.08	190.92	40.49	206.79	40.49	195.45	40.5
169.10	42.69	169.10	42.69	193.78	40.41	212.08	40.29	198.12	40.5
175.71	41.04	174.60	41.30	196.48	40.49	216.27	40.31	202.29	40.46
193.21	40.52	183.93	40.80	199.93	40.52	219.32	40.35	205.68	40.46
210.45	40.43	193.68	40.52	205.00	40.50	222.74	40.37	209.82	40.37
219.41	40.32	208.61	40.41	208.82	40.45	226.20	40.33	212.6	40.26
223.60	40.35	217.46	40.30	213.63	40.35	229.24	39.41	216.16	40.28
226.57	40.33	226.67	40.33	217.51	40.31	230.85	38.74	219.12	40.34
226.69	40.37	229.04	39.32	221.63	40.32	231.55	38.21	222.26	40.45
227.04	40.30	230.82	38.62	224.41	40.38	232.36	37.92	225.58	40.34
228.42	39.64	231.63	38.04	226.25	40.26	233.06	37.77	227.21	40.33
229.95	38.99	232.76	37.70	227.67	39.77	233.87	37.73	228.32	39.68
231.78	38.21	233.53	37.92	228.58	39.49	234.81	38.26	229.55	39.23
232.29	38.09	235.12	38.52	229.56	39.23	236.06	38.51	230.61	38.57

	MANUAL SOCIETY	The second second	TOTAL SECTION AND ADDRESS OF THE PARTY OF TH	A COLUMN TO SERVICE AND A SERV	
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	40.35	40.38	40.38	40.33	40.33
Bankfull Cross-Sectional Area	18.16	17.88	18.17	18.06	20.68
Bankfull Width	16.60	13.16	15.09	13.85	17.67
lood Prone Area Elevation	42.89	43.06	42.99	42.93	42.90
lood Prone Width	124.27	124.27	124.27	125.00	124.68
Max Depth at Bankfull	2.54	2.68	2.61	2.60	2.57
Mean Depth at Bankfull	1.09	1.37	1.20	1.30	1.17
V/D Ratio	15.23	9.61	12.58	10.65	15.10
Intrenchment Ratio	7.49	9.44	8.24	9.03	7.06
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
tream Type	С	С	С	С	C

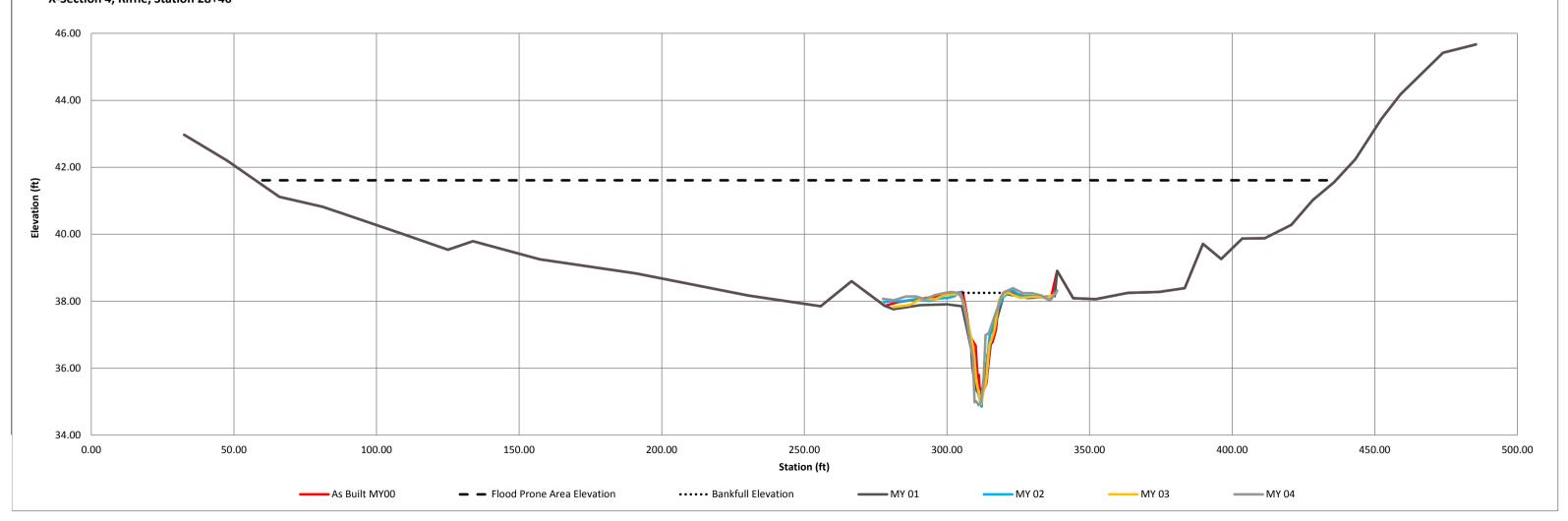
Oakley Crossroads - UT to Tranters Creek X-Section 2, Riffle, Station 6+17

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-3, Pool, STA 12+59
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor, A. Baldwin


M	IY 00	M	Y 01	M	7 02	M'	Y 03	MY	04
Station	Elevation								
20.32	44.49	20.32	44.49	153.13	41.38	153.13	41.39	154.78	41.28
50.25	42.52	50.25	42.52	155.51	41.19	153.61	41.35	158.74	41.22
78.82	41.98	78.82	41.98	159.37	41.29	156.40	41.00	163.33	40.9
97.11	42.25	97.11	42.25	163.57	41.11	164.69	41.15	167.41	40.71
113.72	42.15	113.72	42.15	167.64	40.72	167.39	40.72	168.93	40.6
131.64	41.90	131.64	41.90	173.09	40.94	171.43	40.88	174.28	40.8
145.91	41.47	145.91	41.47	177.54	40.78	177.86	40.70	180.59	40.39
153.13	42.09	153.13	42.09	182.58	40.30	182.06	40.32	185.53	40.21
159.54	41.19	158.28	41.16	185.77	40.12	186.87	39.99	190.46	39.89
171.94	41.02	166.00	40.94	188.89	39.94	191.07	39.94	195.18	39.91
180.95	40.38	170.52	40.88	194.18	39.97	195.94	39.95	199.32	39.92
187.04	39.94	179.13	40.57	200.51	39.92	200.44	39.96	202.19	39.96
197.51	39.98	184.61	40.28	202.61	39.85	202.76	39.86	205.16	39.89
200.36	39.97	190.41	39.96	204.72	39.85	205.35	39.83	207.2	39.28
205.21	39.84	194.41	39.92	206.71	39.17	206.48	39.54	208.7	38.84
205.63	39.82	200.59	39.97	207.89	38.84	208.05	38.73	209.52	37.42
205.93	39.76	205.91	39.83	208.23	38.73	208.65	38.40	211.12	36.64
207.79	38.83	208.18	38.48	209.46	37.19	208.82	38.03	212.51	36.4
209.56	37.40	209.36	37.63	210.59	36.70	209.67	37.40	213.65	36.57
210.71	36.78	209.67	37.18	211.02	36.53	210.70	36.68	214.7	36.87
211.70	36.25	210.78	36.66	212.13	36.75	211.91	36.56	215.67	36.71
214.13	36.40	214.84	36.29	213.04	36.98	213.77	36.95	216.98	36.8

	A 10000	Company of the last of the	THE PERSON NAMED IN	THE REAL PROPERTY AND ADDRESS.	
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	39.68	39.70	39.70	39.61	39.87
Bankfull Cross-Sectional Area	36.86	37.87	34.50	32.69	40.27
Bankfull Width	20.58	24.45	20.80	19.56	22.77
Flood Prone Area Elevation	43.11	43.11	42.87	42.66	43.34
Flood Prone Width	248.46	248.07	244.10	245.00	252.64
Max Depth at Bankfull	3.43	3.41	3.17	3.05	3.47
Mean Depth at Bankfull	1.79	1.55	1.66	1.67	1.77
W/D Ratio	11.50	15.77	12.53	11.71	12.86
Entrenchment Ratio	12.07	10.15	11.74	12.53	11.10
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
Stream Tyne	((C

Oakley Crossroads - UT to Tranters Creek X-Section 3, Pool, Station 12+59


River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-4, Riffle, STA 28+46
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor, A. Baldwin

٨	1Y 00	M	IY 01	M	/ 02	M'	Y 03	M	Y 04
Station	Elevation								
32.58	42.97	32.58	42.97	278.00	37.97	281.19	37.82	277.51	38.07
47.64	42.20	47.64	42.20	280.52	38.00	286.99	37.89	281.36	38.03
65.92	41.12	65.92	41.12	284.26	38.00	290.83	38.06	285.67	38.14
81.03	40.82	81.03	40.82	289.18	38.06	295.88	38.06	289.16	38.14
88.43	40.61	88.43	40.61	293.86	38.01	298.80	38.17	292.29	38.06
108.82	40.02	108.82	40.02	296.90	38.08	304.41	38.22	295.68	38.18
125.06	39.54	125.06	39.54	300.54	38.10	305.66	38.03	298.8	38.24
133.82	39.79	133.82	39.79	302.64	38.15	309.07	36.68	301.5	38.28
157.24	39.25	157.24	39.25	304.70	38.27	309.58	36.30	303.97	38.25
191.12	38.83	191.12	38.83	306.16	37.79	309.72	36.15	305.4	38.06
230.32	38.17	230.32	38.17	307.54	37.21	310.35	35.59	306.85	37.46
255.76	37.85	255.76	37.85	308.62	36.83	311.02	35.33	308.04	36.82
266.56	38.60	266.56	38.60	309.70	36.33	311.95	34.93	309.06	36.31
278.21	37.86	278.21	37.86	309.97	35.76	312.92	35.37	309.7	34.98
282.75	37.97	281.24	37.759	310.39	35.64	313.7	35.56	310.31	35.01
293.74	38.11	290.68	37.881	311.02	35.24	314.1	35.99	311.11	34.89
305.40	38.28	300.11	37.906	312.16	34.85	314.87	36.67	311.88	34.99
305.58	38.25	305.26	37.848	312.3	35.04	316.62	37.12	312.78	35.51
306.89	37.65	307.23	37.095	312.89	35.48	318.28	38.04	313.53	36.99
308.24	36.93	308.54	36.55	314.04	35.74	321.01	38.27	314.65	37.04
310.07	36.67	308.85	36.062	314.17	36.4	325.68	38.1	316.63	37.54
310.71	35.71	309.92	35.422	314.34	36.04	330.21	38.13	319.74	38.26

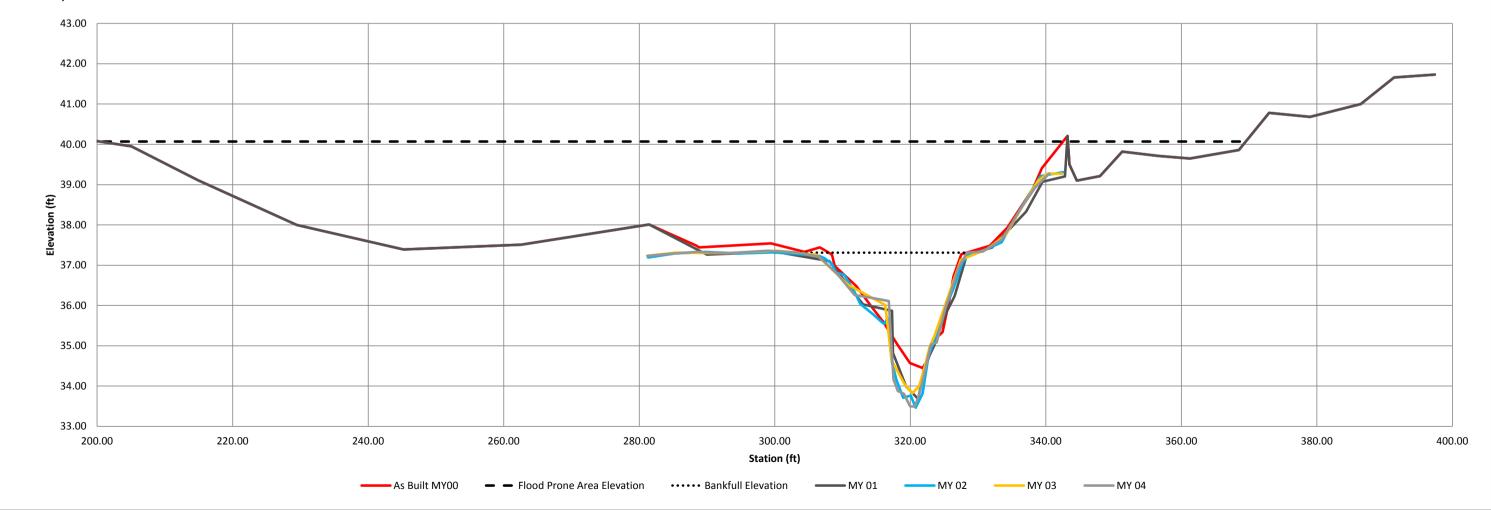
	1		W A AND THE RESERVE		
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	38.24	37.85	38.13	38.22	38.25
Bankfull Cross-Sectional Area	20.90	18.22	19.85	21.57	21.30
Bankfull Width	14.64	13.70	14.70	16.10	15.73
Flood Prone Area Elevation	41.23	40.54	41.41	41.51	41.61
Flood Prone Width	367.14	332.68	367.00	367.00	378.73
Max Depth at Bankfull	2.99	2.69	3.28	3.29	3.36
Mean Depth at Bankfull	1.43	1.33	1.35	1.34	1.35
W/D Ratio	10.24	10.30	10.89	12.01	11.65
Entrenchment Ratio	25.08	24.28	24.97	22.80	24.08
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
Stream Type	С	С	E	С	E

Oakley Crossroads - UT to Tranters Creek X-Section 4, Riffle, Station 28+46

Sta. 28+46 Looking Downstream

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-5, Pool, STA 32+71
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor. A. Baldwin

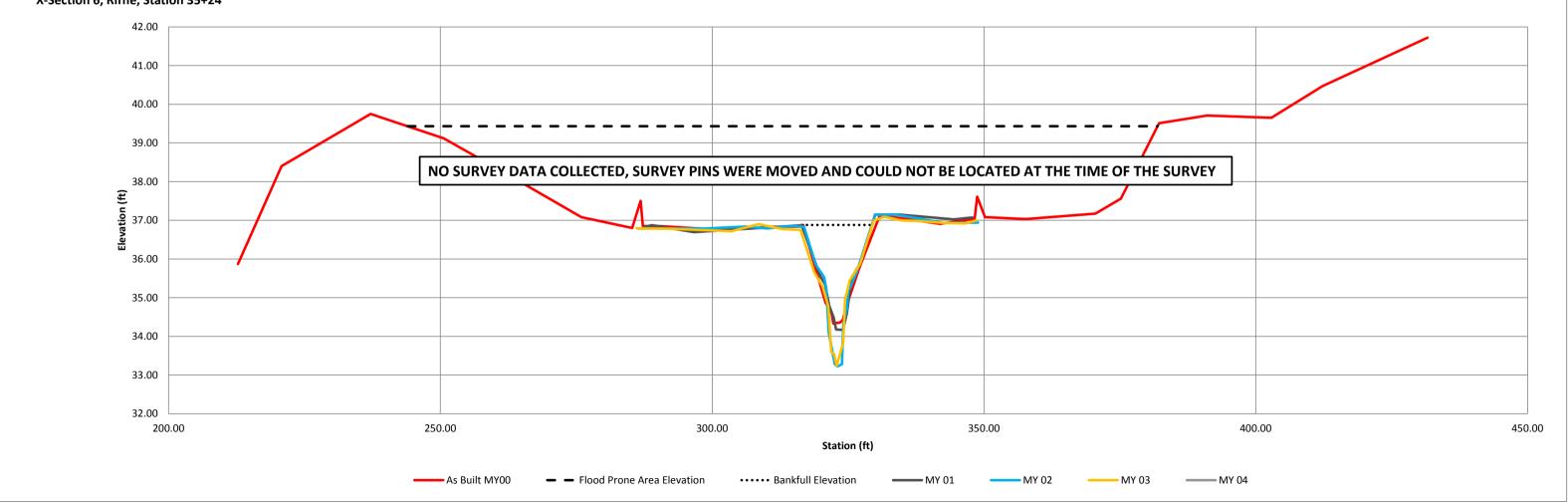
Sta. 32+71 Looking Downstream


^{*}Floodprone width adjusted to not include adjacent farm pond.

V	1Y 00	M	Y 01	M\	/ 02	M'	Y 03	MY 04	
Station	Elevation								
26.15	42.13	26.15	42.13	281.30	37.19	281.17	37.23	281.2	37.23
36.87	42.19	36.87	42.19	285.24	37.29	285.36	37.31	284.25	37.28
68.22	41.81	68.22	41.81	289.79	37.33	292.98	37.30	288.5	37.33
85.37	36.59	85.37	36.59	294.67	37.29	300.40	37.36	293.25	37.3
90.80	34.92	90.80	34.92	299.78	37.32	306.17	37.26	298.92	37.36
176.23	35.02	176.23	35.02	303.71	37.27	310.85	36.51	303.13	37.32
177.81	35.70	177.81	35.70	306.55	37.23	316.32	36.01	306.54	37.21
185.44	38.11	185.44	38.11	307.36	37.17	317.26	34.63	309.29	36.77
195.27	40.20	195.27	40.20	308.48	37.03	319.20	34.04	311.78	36.26
205.06	39.95	205.06	39.95	309.01	36.82	320.31	33.82	314.51	36.18
214.85	39.11	214.85	39.11	310.26	36.76	321.31	34.00	316.83	36.11
229.47	38.00	229.47	38.00	311.69	36.37	322.05	34.43	317.52	34.17
245.21	37.39	245.21	37.39	312.62	36.04	322.85	34.97	318.16	33.88
262.60	37.51	262.60	37.51	314.52	35.78	323.56	35.24	319.05	33.81
281.47	38.01	281.47	38.01	315.69	35.60	327.45	37.13	319.98	33.5
288.37	37.49	289.99	37.262	316.15	35.54	331.31	37.4	320.67	33.49
288.85	37.44	300.08	37.334	316.61	35.68	334.08	37.75	321.3	33.78
299.46	37.54	308.08	37.1	317.26	34.62	336.39	38.41	321.98	34.23
304.38	37.33	313.02	36.025	317.96	34.15	338.86	39.1	323.05	35.03
306.65	37.44	317.31	35.866	318.95	33.71	340.26	39.27	323.88	35.08
307.72	37.34	317.44	34.823	320.06	33.763	342.43	39.27	324.53	35.51
308.44	37.26	319.38	33.992	320.8	33.461			325.21	35.95

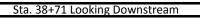
	The second second	DAZES, Transport	17 Table 200 Co. April 17 Co. A		
SUMARY DATA	MY00	MY01*	MY02	MY03	MY04
Bankfull Elevation	37.26	37.33	37.23	37.19	37.31
Bankfull Cross-Sectional Area	29.47	35.63	34.74	30.33	35.00
Bankfull Width	19.06	29.71	23.49	21.70	24.97
Flood Prone Area Elevation	40.07	40.98	41.00	40.56	41.13
Flood Prone Width	289.16	315.10	301.17	300.00	300.00
Max Depth at Bankfull	2.81	3.65	3.77	2.82	3.82
Mean Depth at Bankfull	1.55	1.20	1.48	1.40	1.40
W/D Ratio	12.30	24.76	15.87	15.50	17.84
Entrenchment Ratio	15.17	10.61	12.82	13.82	12.01
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
Stream Type	С	C.	C.	C.	C

Oakley Crossroads - UT to Tranters Creek X-Section 5 Pool, Station 32+71


	-
River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-6, Riffle, STA 35+24
Drainage Area(sq. mi.)	1.59
Date	
Field Crew	

N	IY 00	M	Y 01	M	Y 02	M	Y 03	I	ЛY 04
Station	Elevation								
212.76	35.87	212.76	35.87	286.34	36.79	286.10	36.80		
220.80	38.40	220.80	38.40	298.82	36.79	286.16	36.79		
237.17	39.75	237.17	39.75	306.18	36.84	292.51	36.78		
250.63	39.12	250.63	39.12	310.11	36.79	297.54	36.75		
261.67	38.24	261.67	38.24	314.68	36.85	303.55	36.72		
275.95	37.08	275.95	37.08	316.91	36.83	308.55	36.90		
285.28	36.80	285.28	36.80	319.06	35.85	312.98	36.77		
286.84	37.50	286.84	37.50	320.59	35.53	316.25	36.75		
287.26	36.85	287.26	36.85	320.98	35.25	318.78	35.66		
290.35	36.85	287.43	36.82	321.44	34.10	320.27	35.30		
301.91	36.75	288.9	36.88	322.57	33.28	321.36	34.78		
310.76	36.83	296.65	36.69	323.02	33.22	321.92	33.59		
316.51	36.84	316.45	36.87	323.87	33.28	322.42	33.55		
316.76	36.88	319.93	35.55	324.13	34.34	322.92	33.24		
318.89	35.81	320.76	35.34	324.78	34.72	324.11	33.83		
320.87	34.87	321.54	34.79	325.06	35.20	324.44	34.94		
321.98	34.60	322.35	34.49	325.33	35.24	324.79	35.13		
322.30	34.33	322.78	34.18	326.57	35.65	325.31	35.45		
323.55	34.36	324.04	34.17	328.9	36.67	327.21	35.87		
324.04	34.43	324.79	34.60	330.01	37.14	329.71	36.99		
324.63	34.76	325.66	35.52	334.1	37.14	331.66	37.09		
327.11	35.78	327.28	35.89	342.78	36.93	334.82	37.00		
330.86	37.13	329.96	37.15	348.93	36.94	338.31	36.98		

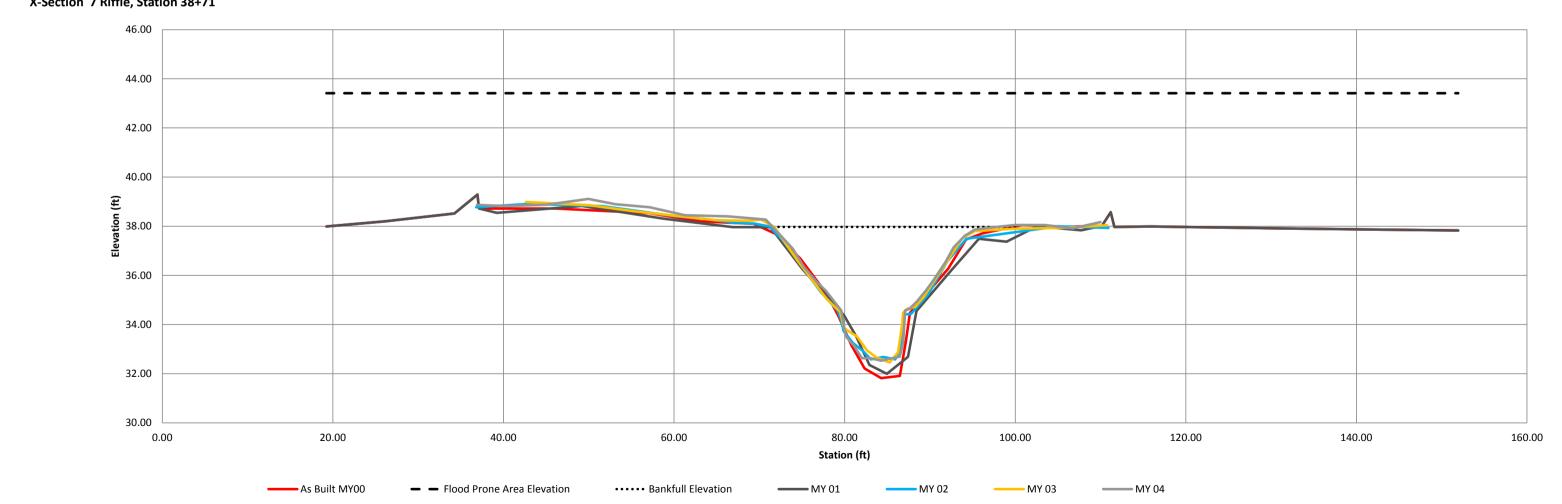
SUMARY DATA	MY00	MY01	MY02	MY03
Bankfull Elevation	36.88	36.87	36.83	36.75
Bankfull Cross-Sectional Area	18.91	17.43	19.10	18.74
Bankfull Width	17.17	12.92	12.37	12.92
Flood Prone Area Elevation	39.43	39.57	40.44	40.26
Flood Prone Width	158.46	166.08	160.00	160.00
Max Depth at Bankfull	2.55	2.70	3.61	3.51
Mean Depth at Bankfull	1.10	1.35	1.54	1.45
W/D Ratio	15.61	9.59	8.03	8.91
Entrenchment Ratio	9.23	12.82	12.93	12.38
Bank Height Ratio	1.00	0.95	1.00	1.00
Stream Type	С	С	E	E

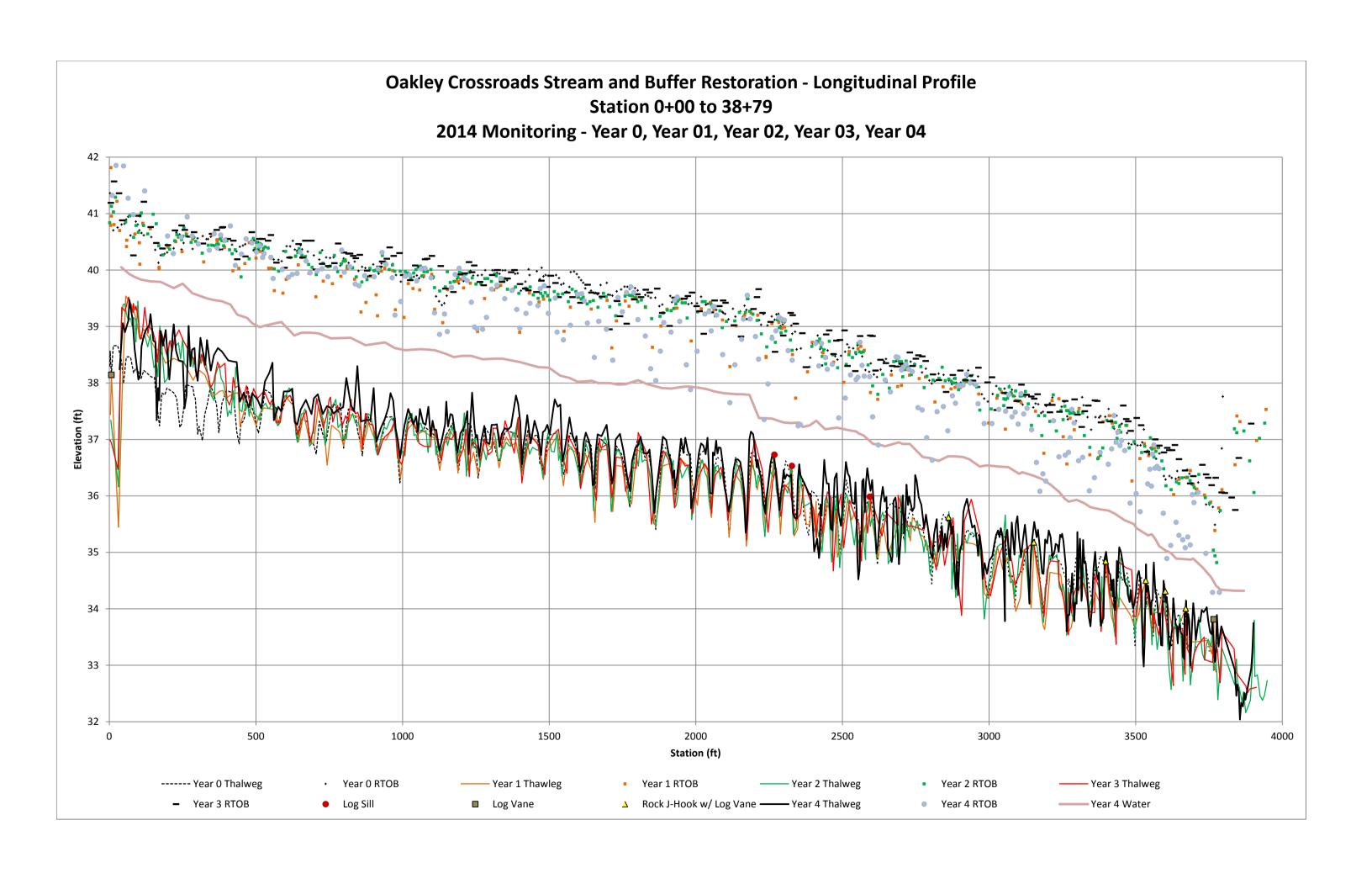

Oakley Crossroads - UT to Tranters Creek X-Section 6, Riffle, Station 35+24

Sta. 35+24 Looking Downstream

River Basin	Tar-Pamlico River
Watershed	Tranters Creek
XS ID	XS-7, Riffle, STA 38+71
Drainage Area(sq. mi.)	1.59
Date	10/7/2014
Field Crew	T. Taylor, A. Baldwin

Field Crew			T. Taylor, A	. Baldwin		J			
M	Y 00	М	Y 01	M	Y 02	M	Y 03	MY	′ 04
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation
19.24		19.24	37.99	36.80	38.77	42.64	38.99	36.9	38.87
26.11	38.20	26.11	38.20	43.00	38.91	50.02	38.86	40.3	38.82
34.24	38.52	34.24	38.52	51.58	38.82	55.25	38.61	45.08	38.88
36.95	39.29	36.95	39.29	60.15	38.41	64.77	38.25	49.96	39.11
37.14	38.72	37.14	38.72	64.02	38.28	68.82	38.22	53.09	38.9
39.57	38.72	39.21	38.544	66.96	38.15	70.21	38.27	57.14	38.77
46.18	38.72	49.19	38.823	69.41	38.11	71.74	37.97	61.3	38.45
57.09	38.53	58.73	38.308	71.14	37.99	74.54	36.57	66.33	38.4
63.06	38.20	66.87	37.967	72.73	37.43	77.9	35.04	70.75	38.27
66.76	38.14	71.32	37.96	77.16	35.34	79.48	34.52	73.91	37.09
69.33	38.10	75.06	36.251	79.17	34.57	79.92	33.85	75.24	36.34
72.02	37.67	79.92	34.376	79.57	34.2	81.46	33.51	76.73	35.73
74.83	36.67	81.32	33.533	79.89	33.73	82.62	32.95	77.81	35.37
77.89	35.25	82.9	32.353	80.99	33.24	83.77	32.65	79.61	34.57
79.27	34.35	84.95	31.993	82.14	32.93	85.27	32.46	80.13	33.52
80.79	33.16	87.42	32.686	83.07	32.58	86.26	32.87	81.12	33.12
82.34	32.21	88.42	34.553	84.53	32.68	86.76	34.07	82.03	32.63
84.27	31.82	92.45	36.186	85.93	32.58	86.84	34.47	82.91	32.64
86.46	31.91	95.74	37.49	86.64	33.08	87.31	34.64	84.26	32.53
87.16	33.28	98.99	37.375	86.87	34.26	88.27	34.72	85.25	32.61
87.65	34.47	102.57	37.996	86.98	34.41	89.28	35.13	86.45	32.69
89.37		107.75	37.837	87.78	34.43	93.79	37.51	86.86	
92.14	36.27	110.16	38.02	89.78	35.23	95.27	37.80	87.08	34.57




* REVISED X-SEC DATA

	- 111	148	A TO	と 日本の日本の	
SUMARY DATA	MY00*	MY01	MY02	MY03	MY04
Bankfull Elevation	38.05	38.00	38.00	37.85	37.97
Bankfull Cross-Sectional Area	75.91	77.93	71.24	62.90	65.91
Bankfull Width	31.46	36.52	34.07	25.52	26.26
Flood Prone Area Elevation	44.28	44.01	43.42	43.24	43.41
Flood Prone Width	132.69	132.69	>200	200.00	200.00
Max Depth at Bankfull	6.23	6.01	5.42	5.39	5.44
Mean Depth at Bankfull	2.41	2.13	2.09	2.46	2.51
W/D Ratio	13.05	17.15	16.30	10.37	10.46
Entrenchment Ratio	4.22	3.63	5.87	7.84	7.62
Bank Height Ratio	1.00	1.00	1.00	1.00	1.00
Stream Type	С	С	С	E	E

Oakley Crossroads - UT to Tranters Creek X-Section 7 Riffle, Station 38+71

	0-14	0		-1- 04							am Da				D l-		-4	(2.050	f = -4\						
Parameter (Oaki Gauge ²		ossroa ional C		ream a	nd Buff				=P Pro	oject N					ı: Main		(3,950 Design		I	Mo	nitorina	n Raso	line	
Tarameter (oauge	ixeg	ionai c	uive	Pre-Existing Condition						Reference Reach(es) Data					Design			Monitoring Baseline						
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					-	10.40	-	-	-	4	7.80	11.20	-	14.60	-	2	-	12.3	-	14.64	17.31	-	20.82		4
Floodprone Width (ft)					-	15.00	-	-	-	4	120.00	126.50	-	133.00	-	2	-	240.0	-	80.66	182.63	-	367.14		4
Bankfull Mean Depth (ft)					-	1.80	-	-	-	4	0.70	1.15	-	1.60	-	2	-	1.5	-	0.88	1.13	-	1.43	-	4
¹ Bankfull Max Depth (ft)					-	2.70	-	-	-	4	1.60	1.85	-	2.10	-	2	-	2.4	-	2.15	2.56	-	2.99	-	4
Bankfull Cross Sectional Area (ft ²)					-	19.00	-	-	-	4	9.50	11.05	-	12.60	-	2	-	19.0	-	18.16	19.08	-	20.90	-	4
Width/Depth Ratio					-	5.70	-	-	-	4	4.80	13.60	-	22.40	-	2	-	8.0	-	10.24	16.19	-	23.66		4
Entrenchment Ratio					-	1.40	-	-	-	4	8.20	12.65	-	17.10	-	2	-	19.5	-	4.66	10.55	-	21.21		4
¹ Bank Height Ratio					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Profile																									
Riffle Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	24.83	35.98	-	53.02		4
Riffle Slope (ft/ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.002	0.003	-	0.006		4
Pool Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20.47	33.67	-	44.45		2
Pool Max depth (ft)					-	-	-	-	-	-	1.7	2.3	-	2.9	-	2	-	4	-	2.81	3.12	-	3.43		2
Pool Spacing (ft)					-	-	-	-	-	-	5	27	35	67	-	4	43	52.5	62	43.4	64.26	-	94.03		2
Pattern																									
Channel Beltwidth (ft)					-	-	-	-	-	-	45	72.5	-	100		2	62	74.0	86	38.56	55.94	-	86.18	-	48.00
Radius of Curvature (ft)					-	-	-	-	-	-	8	12.8	14	21		4	22	27.0	31	19.24	27.81	-	36.28	-	56.00
Rc:Bankfull width (ft/ft)					-	-	-	-	-	-	0.5	1.2	1.4	1.8		4	1.8	2.2	2.5	1.11	1.61	-	2.10	-	56.00
Meander Wavelength (ft)					-	-	-	-	-	-	17	75	100	156		4	86	111	135	85.46	103.92	-	118.61	-	48.00
Meander Width Ratio					-	_	-	-	-	-	5.8	6.3	-	6.8		2	5	6.0	7	2.23	3.23	_	4.98	-	48.00
											0.0			0.0											10100
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							0.	2									0.14			0.093					
Max part size (mm) mobilized at bankfull					1		-											-				2	5		
Unit Stream Power (transport capacity)								_																	
lbs/ft/s per unit width ⁶							0.2	25										0.17				0.	16		
Additional Reach Parameters											-														
Rosgen Classification							G5	ic					C5	, E5				E5				С	:4		
Bankfull Velocity (fps)							1.	9										1.7				1.0	65		
Bankfull Discharge (cfs)							30																		
Valley length (ft)							-							-											
Channel Thalweg length (ft)							-							-				-				39	50		
Sinuosity (ft)							1.0)1					1.	.18				1.28					.4		
Water Surface Slope (Channel) (ft/ft)					0.0018									002				0.0014)146		
BF slope (ft/ft)					-								-				-					144			
³ Bankfull Floodplain Area (acres)													-			0.00144									
4% of Reach with Eroding Banks										-															
Channel Stability or Habitat Metric										-															
Biological or Other														-											
Shaded cells indicate that these will typically not be filled in																									

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3; 6. Units changed from W/m² to reflect those provided in original design.

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Oakley Crossroads Stream and Buffer Restoration / EEP Project No. 273 - Segment/Reach: Mainstem (3.950 feet)																											
Parameter	Pre-Existing Condition							Reference Reach(es) Data					Design					As-built/Baseline									
¹ Ri% / Ru% / P% / G% / S%	-	0	-	0	0			-	-	-	-	-				-	l -	-	-	1	52	-	48	-	-		
¹ SC% / Sa% / G% / C% / B% / Be%	0	33	67	0	0	0		0	100	0	0	0	0														
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.14	0.26	0.5	4.4	7.3	-	30	0.3	0.4	0.5	0.9	1.2	-	-													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	-	-	-	-	1			-	-	-	-	-									-	-	-	-	-		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	-	-	-	-				-	-	-	-										-	-	-	-			

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavi the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

			Ta	able '	11a. l	Moni	torin	g Dat	a - Dir	nens	iona	l Mor	phole	oav S	Summ	arv (I	Dimei	nsion	al Pa	arame	eters	– Cro	oss S	ectio	ns)										
								ream					-												-										
	C	cross S							ross S							ross S							ross Se			28+46	6, Riffl	e)	C	ross S	ection	5 (ST <i>F</i>	32+71	l, Poo)
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		40.49	40.57	40.37	40.86				40.38	40.38	40.33	40.33				39.70	39.70	39.61	39.87				37.85	37.93	38.22	38.25				37.33	37.23	37.19	37.31		
Bankfull Width (ft)	20.82	12.39	15.49	15.73	11.65				13.16						20.58	24.38						14.64	13.70	14.70	16.10	15.73			19.06	29.71					
1 \ \ 7		65.65							131.28						248.08			245.00	252.64			367.14	332.68				3		-	315.10					1
Bankfull Mean Depth (ft)	0.88	0.68		0.88				1.09	1.37	1.20	1.30				1.79			1.67	1.77			1.43	1.33			1.35			1.55	1.20		1.40			1
Bankfull Max Depth (ft)		1.14		2.15				2.54		2.61					3.43			3.05	3.47			2.99	2.69						2.81			2.82			1
Bankfull Cross Sectional Area (ft ²)				9.15				18.16	17.88	18.17	18.06	20.68			36.86	37.87						20.90	18.22						29.47			30.33			
Bankfull Width/Depth Ratio				27.12	12.14			15.23	9.61	12.58					11.50			11.71				10.24	10.30						12.30	24.76					1
Bankfull Entrenchment Ratio				4.99				7.49	7.51	8.52					12.05			12.53					24.28						15.17			13.82			1
Bankfull Bank Height Ratio	1.00	0.95	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00			1.00	0.95	1.00	1.00	1.00			1.00	0.90	1.00	1.00	1.00			1.00	0.98	1.00	1.00	1.00		1
Cross Sectional Area between end pins (ft ²)																																<u> </u>	'		1
d50 (mm)																																			
	C	ross Se	ection	6 (STA	35+24	, Riffle	·)	Cı	ross Se	ction	7 (STA	38+71	, Othe	r)		Cro	oss Se	ction 8	(Riffle	e)			Cr	oss Se	ection	9 (Poc	ol)			Cro	oss Se	ction 1	0 (Poc	ol)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		36.87	36.83	36.75					38.00																										
Bankfull Width (ft)	17.17	12.92	12.37	12.92					36.52																										
Floodprone Width (ft)	158.46	166.08	160.00	160.00				132.69	132.69																										
Bankfull Mean Depth (ft)	1.10	1.35	1.54	1.45				2.41	2.13	2.09	2.46	2.51																							
Bankfull Max Depth (ft)	2.55	2.70	3.61	3.51				6.23	6.01	5.42	5.39	5.44																							
Bankfull Cross Sectional Area (ft²)	18.91	17.43	19.10	18.74					77.93																										
Bankfull Width/Depth Ratio			8.03					13.05	17.15																										
Bankfull Entrenchment Ratio								4.22		5.87																									
Bankfull Bank Height Ratio	1.00	0.95	1.00	1.00				1.00	1.00	1.00	1.00	1.00																							
Cross Sectional Area between end pins (ft2)																																			
d50 (mm)																																			

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values.

Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

Dimension and Substrate - Riffle only Bankfull Width (ft) 14.6 Floodprone Width (ft) 80.7 Bankfull Mean Depth (ft) 0.9 Bankfull Max Depth (ft) 2.2 Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 Bank Height Ratio -	Mean 17.31 182.63 1.13	Med -	Max 20.82	SD ⁴	n	Min				ī	T						MY- 3 MY- 4																MY- 5			
Bankfull Width (ft) 14.6 Floodprone Width (ft) 80.7 Bankfull Mean Depth (ft) 0.9 1 Bankfull Max Depth (ft) 2.2 Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 1 Bank Height Ratio -	17.31 182.63 1.13	Med -		SD ⁴	n	N diam																												工		
Floodprone Width (ft) 80.7 Bankfull Mean Depth (ft) 0.9 ¹ Bankfull Max Depth (ft) 2.2 Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 ¹ Bank Height Ratio -	182.63 1.13	-	20.82			IVIII	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	l Max	x SD	4 n	Mi	n Mea	an Me	ed Ma	x S		
Bankfull Mean Depth (ft) 0.9 ¹ Bankfull Max Depth (ft) 2.2 Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 ¹ Bank Height Ratio -	1.13	_		-	4	12.4	12.8	12.92					14.4	14.895	15.49	1.399342107	4	12.9	14.7	14.8	16.1	1.5	4	11.7				7 3.07								
¹ Bankfull Max Depth (ft) 2.2 Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 ¹ Bank Height Ratio -			367.14	-	4	65.7	118.7	124.3	166.1	50.45	4	78.5	183.5	144.25	367	126.8522763	4	78.5	182.6	142.5	367.0	127.4	4	80.9	194.78	124.7	7 378.	7 160.	.8 3							
Bankfull Cross Sectional Area (ft²) 18.2 Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 ¹ Bank Height Ratio -		-	1.43	-	4	0.7	1.1	1.35	1.37	0.393	4	0.6	1.2	1.275	1.54	0.392173431	4	0.9	1.2	1.3	1.5	0.2	4	1.0	1.16	1.17	1.3	5 0.19	5 3							
Width/Depth Ratio 10.2 Entrenchment Ratio 4.7 ¹ Bank Height Ratio -	2.56	-	2.99	-	4	1.1	2.2	2.683	2.703	0.897	4	1.8	2.8	2.945	3.61	0.783007024	4	2.2	2.9	2.9	3.5	0.6	4	1.8	2.58	2.57	3.30	0.77	5 3							
Entrenchment Ratio 4.7 ¹ Bank Height Ratio -	19.08	-	20.9	-	4	8.4	8.4	17.43	17.88	5.365	4	9.8	16.7	18.635	19.85	4.68566164	4	9.2	16.9	18.4	21.6	5.4	4	11.2	17.73	20.68	8 21.3	0 5.65	5 3							
¹ Bank Height Ratio -	16.19	-	23.66	-	4	9.6	12.5	9.606	18.22	4.978	4	8.0	14.0	11.73194444	24.58730159	7.289496698	4	8.9	14.7	11.3	27.1	8.4	4	11.7	12.96	12.14	4 15.1	0 1.86	7 3							
g	10.55	-	21.21	-	4	5.3	9.2	9.443	12.82	3.767	4	5.1	12.9	10.72504611	24.96598639	8.682408015	4	5.0	12.3	10.7	22.8	7.6	4	7.0	12.70	7.06	24.0	8 9.85	8 3							
	-	-	-	-	-	1	1	1	1	0	4	1	1	1	1	0	4	1.0	1	1	1	0	4	1.0	1.00	1.00	1.00	0 0	3							
rotile																																				
Riffle Length (ft) 24.8	35.98	-	53.02	-	4	24.2	35.2	-	53.1	-	4	20.28	30.8	-	55.2		4	19.4	33.1		52.1		4	15.05	24.8		33.5	3	4					Т		
Riffle Slope (ft/ft) 0.002	0.003	-	0.006	-	4	0.002	0.003	-	0.006	-	4	0.002	0.004	-	0.006		4	0.002	0.004		0.006		4	0.002	0.0034		0.00	6	4					Т		
Pool Length (ft) 20.47	33.67	-	44.45	-	2	21	32.54	-	45.21	-	2	26.76	38.88	-	51		2	22.02	33		44.04		2	24.76	32.2		39.6	4	2							
Pool Max depth (ft) 2.81	3.12	-	3.43	-	2	3.41	3.53	-	3.65	-	2	3.17	3.47	-	3.77		2	3.02	3.4		3.77		2	2.27	2.73		3.18	3	2		1					
Pool Spacing (ft) 43.4	64.26	-	94.03	-	2	42.1	65.2	-	95.2	-	2	28.72	64	-	106		33	27.48	64.31		113		33	25.52	63.62		116.	8	52		1					
attern		•							<u> </u>	_																										
Channel Beltwidth (ft) 38.6	55.94	-	86.18	-	48																															
Radius of Curvature (ft) 19.2	27.81	-	36.28	-	56									_																						
Rc:Bankfull width (ft/ft) 1.1	1.61	-	2.1	-	56									Patte	ern data will not t	ypically be collec	ted unle	ess visua	al data, d base		nal data	or prof	ile data	indicate	significa	int shifts	s from									
Meander Wavelength (ft) 85.5	103.92	-	118.61	-	48																															
Meander Width Ratio 2.2	3.23	-	4.98	-	48																															
dditional Reach Parameters																																				
Rosgen Classification		C4,	E5					C4,l	E5			C4,E5					C4,E5					C4,E5							•							
Channel Thalweg length (ft)																															•					
Sinuosity (ft)		1.4	4					1.4	4				1.4					1.4						1	1.4				•							
Water Surface Slope (Channel) (ft/ft)	0.00146								0.00145								0.00145 0.00152 0.0015						•													
BF slope (ft/ft)	0.00144					0.00139						0.00137 0.00135 0.00132					•																			
³ Ri% / Ru% / P% / G% / S% 52	-	48	-	-		52	-	48	-	-		52	-	48	-	-		52	-	48	-	-		52	-	48	-	-						Т		
³ SC% / Sa% / G% / C% / B% / Be%																																		T		
³ d16 / d35 / d50 / d84 / d95 /																																		T		
² % of Reach with Eroding Banks																																•				
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Appendix E. Hydrology Data

Table 12 – Verification of Bankfull Events

(This page intentionally left blank for two-sided printing)

Oakley Crossroads Stream and Buffer Restoration Project - EEP Project No. 273											
Date of Data Collection	nte of Data Collection Date of Occurrence Method Photo										
September 13, 2011	unknown	Visual observation of debris lines	n/a								
October 4, 2012	unknown	Crest gauge	S9 (MY2)								
October 10, 2012	unknown	Visual observation of debris lines	S8 (MY2)								
March 28, 2013	unknown	Crest gauge	S8 (MY3)								
April 2, 2014	unknown	Crest gauge	S8 (MY4)								
October 7, 2014	unknown	Sediment on vegetation	S9 (MY4)								